Simpson Nichols
02/16/2023 · Junior High School
(b) i. If \( F \) is a conservative field, prove that curl \( \vec{F}=\nabla \times \vec{F}=\overrightarrow{0} \) (i.e., \( \vec{F} \) is irrotational). ii. Conversely, if \( \nabla \times \vec{F}=\overrightarrow{0} \) (i.e., \( \vec{F} \) is irrotational), prove that \( \vec{F} \) is conservative. (c) If \( \phi=2 x y z^{2}, \quad \vec{F}=x y \vec{i}-z \vec{j}+x^{2} \vec{k} \) and C is the curve \( x=t^{2}, \quad y=2 t, \quad z=t^{3} \) from \( t=0 \) to \( t=1 \), evaluate the line integrals: i. \( \int_{C} \phi d \vec{r} \). ii. \( \int_{C} \vec{F} \times d \vec{r} \). "Mathematics Can Smile!" ( 2 mar
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
(b) i. If \( F \) is a conservative field, its curl is zero, making it irrotational. Conversely, if the curl is zero, \( F \) is conservative.
(c) i. The line integral of \( \phi \) along the curve \( C \) is \( \frac{4}{5} \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit