Reid Olson
11/28/2023 · Middle School

La ecuación \( 25 x^{2}+9 y^{2}-150 x+36 y+36=0 \) representa una cónica. I Identifique la cónica y obtenga su ecuación canónica. Halle las coordenadas del centro \( C \). I Halle las coordenadas de los vértices y los focos. ] Escriba la ecuación del eje focal. Halle la excentricidad y la longitud del lado recto. ] Bosqueje la gráfica con los elementos determinados anteriormente.

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

La ecuación canónica de la elipse es \(\frac{(x - 3)^{2}}{9} + \frac{(y + 2)^{2}}{25} = 1\). El centro \( C \) es \( (3, -2) \), los vértices son \( (3, 3) \) y \( (3, -7) \), los focos son \( (3, 2) \) y \( (3, -6) \), el eje focal es \( x = 3 \), la excentricidad es \( \frac{4}{5} \), y la longitud del lado recto es \( \frac{50}{3} \).

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions