If \( \mathrm{m} \angle A=x^{2}-6 x, \mathrm{~m} \angle B=2 x-3 \), and \( \mathrm{m} \angle A C D=9 x+27 \), what is the value of \( x \) ? 1) 10 2) 2 3) 3 4) 15 8 In rhombus \( A B C D \), the diagonals \( \overline{A C} \) and \( \overline{B D} \) intersect at \( E \). If \( A E=5 \) and \( B E=12 \), what is the length of \( \overline{A B} \) ? 1) 7 2) 10 3) 13 4) 17 9calene triangle \( A B C \) is similar to triangle \( D E F \). Which statement is false? 1) \( A B: B C=D E: E F \) 2) \( A C: D F=B C: E F \) 3) \( \angle A C B \cong \angle D F E \) 4) \( \angle A B C \cong \angle E D F \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve for \(x\), we know that in any triangle, the measures of angles should sum up to 180 degrees. Setting up the equation: \[ x^2 - 6x + (2x - 3) + (9x + 27) = 180 \] This simplifies to: \[ x^2 + 5x + 24 = 180 \quad \Rightarrow \quad x^2 + 5x - 156 = 0 \] Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), we can solve for \(x\). Thus, the possible solutions need to be checked against provided options. --- In rhombus \(ABCD\), the diagonals intersect at right angles and bisect each other. To find the length of \(AB\): Using the Pythagorean theorem, we calculate \(AB\): \[ AB = \sqrt{AE^2 + BE^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Thus, the length of \(\overline{AB}\) is indeed 13, confirming that option 3 is correct.