In a class of 25 students, 12 like maths(M), 9 like science(S) and 3 like both. Find the probability that a randomly selected student likes neither maths nor science.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this problem, we first find the number of students who like either maths or science or both. Using the principle of inclusion-exclusion: Total students liking maths or science = (Students liking M) + (Students liking S) - (Students liking both) = 12 + 9 - 3 = 18 Now, to find the number of students who like neither, we subtract this from the total number of students: Students liking neither = Total students - Students liking either = 25 - 18 = 7 Finally, the probability that a randomly selected student likes neither maths nor science is: Probability = (Students liking neither) / (Total students) = 7 / 25 So, the probability is **7/25**.