Pregunta
Write the measure in degrees. \( \begin{array}{c}\frac{11 \pi}{6} \\ {[?]^{\circ}}\end{array} \)
Ask by Munoz Whittaker. in the United States
Nov 05,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \frac{11 \pi}{6} = 330^\circ \)
Solución
To convert radians to degrees, you can use the conversion factor \( \frac{180^\circ}{\pi} \).
Given the angle \( \frac{11 \pi}{6} \) radians, the conversion to degrees is done as follows:
\[
\frac{11 \pi}{6} \times \frac{180^\circ}{\pi}
\]
The \( \pi \) in the numerator and denominator cancels out:
\[
= \frac{11 \times 180^\circ}{6}
\]
Now, calculate \( \frac{180}{6} \):
\[
= 30^\circ
\]
Now multiply by 11:
\[
= 11 \times 30^\circ = 330^\circ
\]
Thus, the measure in degrees is:
\[
\frac{11 \pi}{6} = 330^\circ
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To convert radians to degrees, you can use the formula: degrees = radians × (180/π). So for \( \frac{11 \pi}{6} \): \( \frac{11 \pi}{6} \times \frac{180}{\pi} = \frac{11 \times 180}{6} = 330 \) degrees. Therefore, \( \frac{11 \pi}{6} \) is equal to \( 330^{\circ} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium