Pregunta
upstudy study bank question image url

\begin{tabular}{l} Evaluate (i) \( \int \log x d x \) \\ (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} d x \) \\ \hline\end{tabular}

Ask by Reed Conner. in Nepal
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The answers are: 1. \( \int \log x \, dx = x \log x - x + C \) 2. \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \)

Solución

Let's evaluate each integral step by step. ### (i) \( \int \log x \, dx \) This is a standard integral that can be solved using integration by parts. Recall the formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \log x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = dx \) ⇒ \( v = x \) Applying integration by parts: \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - \int 1 \, dx = x \log x - x + C \] **Answer for (i):** \[ \int \log x \, dx = x \log x - x + C \] --- ### (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx \) To evaluate this integral, we'll use a substitution that transforms it into the form of the Beta function, which is related to the Gamma function. **Step 1: Substitution** Let \( u = x^3 \). Then, \[ x = u^{1/3} \quad \text{and} \quad dx = \frac{1}{3} u^{-2/3} \, du \] **Step 2: Change of Limits** When \( x = 0 \), \( u = 0 \). When \( x = 1 \), \( u = 1 \). **Step 3: Rewrite the Integral** Substituting into the integral: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \int_{0}^{1} \frac{u}{\sqrt{1 - u}} \cdot \frac{1}{3} u^{-2/3} \, du = \frac{1}{3} \int_{0}^{1} u^{1/3} (1 - u)^{-1/2} \, du \] **Step 4: Express in Terms of the Beta Function** The Beta function is defined as: \[ B(a, b) = \int_{0}^{1} t^{a-1} (1 - t)^{b-1} \, dt \] Comparing, we have: \[ a = \frac{4}{3}, \quad b = \frac{1}{2} \] Thus, \[ \frac{1}{3} \int_{0}^{1} u^{1/3} (1 - u)^{-1/2} \, du = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \] **Step 5: Relate to the Gamma Function** The Beta function can be expressed in terms of Gamma functions: \[ B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)} \] Therefore, \[ \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] **Final Answer:** \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] Where \( B \) is the Beta function and \( \Gamma \) is the Gamma function. ### Summary of Results 1. **Integral (i):** \[ \int \log x \, dx = x \log x - x + C \] 2. **Integral (ii):** \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} \cdot \frac{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{3}\right)} \] Or, using the Beta function: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{1}{3} B\left(\frac{4}{3}, \frac{1}{2}\right) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the integrals, we'll tackle them one at a time. (i) To evaluate \( \int \log x \, dx \), we can use integration by parts. Let: - \( u = \log x \) so that \( du = \frac{1}{x} \, dx \) - \( dv = dx \) so that \( v = x \) Now, applying integration by parts: \[ \int \log x \, dx = u v - \int v \, du \] \[ = x \log x - \int x \cdot \frac{1}{x} \, dx \] \[ = x \log x - \int 1 \, dx \] \[ = x \log x - x + C \] So, the result is: \[ \int \log x \, dx = x \log x - x + C \] (ii) To evaluate the definite integral \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} \, dx \), we can use substitution. Let: \[ u = 1 - x^3 \quad \Rightarrow \quad du = -3x^2 \, dx \quad \Rightarrow \quad dx = -\frac{du}{3x^2} \] Now we also need to express \( x^3 \) in terms of \( u \) by rearranging: \[ x^3 = 1 - u \quad \Rightarrow \quad x = (1 - u)^{1/3} \quad \Rightarrow \quad x^2 = (1 - u)^{2/3} \] Now, changing limits according to the substitution: When \( x = 0 \), \( u = 1 \) and when \( x = 1 \), \( u = 0 \). Plugging everything in: \[ = \int_{1}^{0} \frac{(1-u)}{\sqrt{u}} \left(-\frac{du}{3(1-u)^{2/3}}\right) \] This simplifies to: \[ = \frac{1}{3} \int_{0}^{1} \frac{\sqrt{1-u}}{u^{1/2}} du \] This integral can be solved using the beta function or directly through evaluation techniques. The final answer can be simplified to arrive at a closed form. Therefore, we find that: \[ \int_{0}^{1} \frac{x^{3}}{\sqrt{1-x^{3}}} \, dx = \frac{1}{3} \cdot \frac{\pi}{2} = \frac{\pi}{6} \] So, the evaluations yield: (i) \( \int \log x \, dx = x \log x - x + C \) (ii) \( \int_{0}^{1} \frac{x^{3}}{\sqrt{1 - x^{3}}} \, dx = \frac{\pi}{6} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad