Pregunta
upstudy study bank question image url

Compare the investment below to an investment of the same principal at the same rate compounded annually. principal: \( \$ 2,000 \), annual interest: \( 9 \% \), interest periods: 12 , number of years: 10 After 10 years, the investment compounded periodically will be worth \( \$ \square \) more than the investment compounded annually. (Round to two decimal places as needed.)

Ask by Marsh Wheeler. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 10 years, the investment compounded monthly is worth \$167.90 more than the investment compounded annually.

Solución

To compare the two investments—one compounded annually and the other compounded monthly—we'll calculate the future value of each and determine the difference after 10 years. ### Given: - **Principal (P):** \$2,000 - **Annual Interest Rate (r):** 9% or 0.09 - **Number of Years (t):** 10 - **Compounding Periods:** - **Annually:** 1 per year - **Monthly:** 12 per year ### Formulas: 1. **Future Value with Annual Compounding:** \[ A_{\text{annual}} = P \times \left(1 + r\right)^t \] 2. **Future Value with Monthly Compounding:** \[ A_{\text{monthly}} = P \times \left(1 + \frac{r}{12}\right)^{12t} \] 3. **Difference:** \[ \text{Difference} = A_{\text{monthly}} - A_{\text{annual}} \] ### Calculations: 1. **Annual Compounding:** \[ A_{\text{annual}} = 2000 \times (1 + 0.09)^{10} = 2000 \times 2.367364 \approx \$4,734.72 \] 2. **Monthly Compounding:** \[ A_{\text{monthly}} = 2000 \times \left(1 + \frac{0.09}{12}\right)^{120} = 2000 \times (1.0075)^{120} \approx 2000 \times 2.45131 \approx \$4,902.62 \] 3. **Difference:** \[ \text{Difference} = 4902.62 - 4734.72 \approx \$167.90 \] ### Conclusion: After 10 years, the investment compounded monthly will be worth **\$167.90** more than the investment compounded annually. **Answer:** After 10 years, the investment compounded periodically is worth **\$167.90** more.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's first calculate the future value of the investment compounded annually. The formula for calculating future value (FV) when compounded annually is: \[ FV = P(1 + r)^n \] Where: - \( P \) is the principal amount (\$2000), - \( r \) is the annual interest rate (9% or 0.09), - \( n \) is the number of years (10). So for compounding annually, we have: \[ FV = 2000(1 + 0.09)^{10} = 2000(1.09)^{10} \approx 2000 \times 2.36736 \approx 4734.73 \] Now, let's calculate the future value of the investment compounded periodically. The formula for future value when compounded periodically with \( m \) times a year is: \[ FV = P\left(1 + \frac{r}{m}\right)^{mt} \] In this case, the investment is compounded 12 times a year (monthly), so \( m = 12 \): \[ FV = 2000\left(1 + \frac{0.09}{12}\right)^{12 \times 10} = 2000\left(1 + 0.0075\right)^{120} \] \[ = 2000(1.0075)^{120} \approx 2000 \times 2.45774 \approx 4915.48 \] Now, we calculate how much more the investment compounded periodically is worth compared to the investment compounded annually: \[ 4915.48 - 4734.73 \approx 180.75 \] Thus, after 10 years, the investment compounded periodically will be worth approximately \( \$180.75 \) more than the investment compounded annually.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad