Pregunta
upstudy study bank question image url

1) Polynomials are closed under multiplication. What does that mean? When you multiply polynomials, the result is always a polynomial. When you multiply polynomials, the result is sometimes not a polynomial. When you multiply polynomials, the result is never a polynomial. Whe

Ask by Lambert Evans. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When you multiply polynomials, the result is always a polynomial.

Solución

The statement "Polynomials are closed under multiplication" means that when you multiply two polynomials together, the result is always a polynomial. To clarify: 1. **Polynomials** are expressions that consist of variables raised to non-negative integer powers and coefficients. For example, \( P(x) = 2x^2 + 3x + 1 \) and \( Q(x) = x + 4 \) are both polynomials. 2. **Closure under multiplication** means that if you take any two polynomials and multiply them, the product will also be a polynomial. For example: - If you multiply \( P(x) = 2x^2 + 3x + 1 \) and \( Q(x) = x + 4 \): \[ P(x) \cdot Q(x) = (2x^2 + 3x + 1)(x + 4) \] When you expand this product, you will get: \[ = 2x^3 + 8x^2 + 3x^2 + 12x + 1x + 4 \] \[ = 2x^3 + 11x^2 + 12x + 4 \] This result, \( 2x^3 + 11x^2 + 12x + 4 \), is also a polynomial. Thus, the correct interpretation of the statement is: - **When you multiply polynomials, the result is always a polynomial.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When you multiply polynomials, the result is always a polynomial means that no matter the degree or type of the polynomials you're starting with, the product will maintain the structure of a polynomial. For example, if you multiply \( (2x^2 + 3) \) by \( (x + 1) \), the result is \( 2x^3 + 5x^2 + 3 \), which is indeed a polynomial. It's like a party—if you invite a couple of polynomials to the dance floor, they'll have a blast multiplying and creating a new polynomial without ever turning into a different kind of mathematical creature! This closure property ensures that polynomials remain within the same family, no matter how much fun they have multiplying each other.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad