Pregunta
upstudy study bank question image url

Connor invested \( \$ 59,000 \) in an account paying an interest rate of \( 2.6 \% \) compounded continuously. Assuming no deposits or withdrawals are made, how much money, to the nearest hundred dollars, would be in the account after 12 years?

Ask by Hilton Thornton. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 12 years, Connor will have approximately \$80,600 in the account.

Solución

To find the amount of money in the account after 12 years, we can use the formula for continuous compounding: \[ A = P \times e^{rt} \] Where: - \( A \) is the amount of money in the account after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the interest rate, - \( t \) is the time in years. Given: - \( P = \$59,000 \) - \( r = 2.6\% = 0.026 \) - \( t = 12 \) years Substitute the values into the formula: \[ A = 59000 \times e^{0.026 \times 12} \] Now, we can calculate the amount of money in the account after 12 years. Calculate the value by following steps: - step0: Calculate: \(59000e^{0.026\times 12}\) - step1: Multiply the numbers: \(59000e^{0.312}\) - step2: Convert the expressions: \(59000e^{\frac{39}{125}}\) - step3: Rewrite the expression: \(59000\sqrt[125]{e^{39}}\) The amount of money in the account after 12 years is approximately $80,603.13. Rounded to the nearest hundred dollars, the amount of money in the account after 12 years is $80,600.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the amount of money in the account after 12 years with continuous compounding, we can use the formula for continuously compounded interest: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (as a decimal), - \( t \) is the time in years, - \( e \) is the Euler's number (approximately \( 2.71828 \)). Plugging in the values: - \( P = 59000 \), - \( r = 0.026 \) (which is \( 2.6\% \)), - \( t = 12 \). Now calculating \( A \): \[ A = 59000 \times e^{0.026 \times 12} \] \[ A = 59000 \times e^{0.312} \] \[ A \approx 59000 \times 1.3656 \quad (\text{using } e^{0.312} \approx 1.3656) \] \[ A \approx 80496.40 \] Rounding to the nearest hundred dollars, the total amount in the account after 12 years would be approximately \( \$80,500 \).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad