Pregunta
upstudy study bank question image url

Interest rate (with changing years). Keiko is looking at the following investment choices and wants to know what annual rate of return each choice produces. a. Invest \( \$ 450.00 \) and receive \( \$ 746.23 \) in 11 years. b. Invest \( \$ 3,600.00 \) and receive \( \$ 10,465.82 \) in 17 years. c. Invest \( \$ 32,914.85 \) and receive \( \$ 120,000.00 \) in 20 years. d. Invest \( \$ 33,619.78 \) and receive \( \$ 1,300,000.00 \) in 40 years. b. What annual rate of return will Keiko earn if she invests \( \$ 3,600.00 \) today and receives \( \$ 10,465.82 \) in 17 years? \% (Round to two decimal places.)

Ask by Malone Boone. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Keiko will earn an annual rate of return of **6.00%** on her investment of \$3,600.00 over 17 years.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To determine the annual rate of return for Keiko's investment of \$3,600.00 that grows to \$10,465.82 in 17 years, we can use the future value formula: \[ FV = PV(1 + r)^n \] Where: - \(FV\) is the future value (\$10,465.82) - \(PV\) is the present value (\$3,600.00) - \(r\) is the annual interest rate - \(n\) is the number of years (17) Rearranging the formula to solve for \(r\): \[ r = \left( \frac{FV}{PV} \right)^{\frac{1}{n}} - 1 \] Plugging in the numbers: \[ r = \left( \frac{10,465.82}{3,600} \right)^{\frac{1}{17}} - 1 \] \[ r = \left( 2.91 \right)^{\frac{1}{17}} - 1 \] \[ r \approx 0.0692 \text{ or } 6.92\% \] So, the annual rate of return Keiko will earn from this investment is approximately **6.92%**. --- In the world of finance, the importance of compounding can’t be overstated! The earlier you invest, the more your money can grow over time due to compounding interest. Simply put, it's like a snowball effect where your earnings begin to earn more money, and it gets bigger and bigger! When considering investments, always keep an eye on the time factor! The longer the investment period, the lower the rate of return you may need to achieve your goals, allowing you to ride the market fluctuations and enjoy the power of compound interest while sitting back and relaxing!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad