Pregunta
upstudy study bank question image url

\( \frac { \sin ( 90 - x ) \cdot \sin ( 980 - x ) } { \cos ( 3 + 0 ^ { \circ } - x ) \cdot \sin ( 180 - x ) \cdot \cos 90 - x ) } \)

Ask by Herrera Fitzgerald. in South Africa
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified expression is: \[ \frac{\cos(x) \cdot \sin(980 - x)}{\cos(3 - x) \cdot \sin^2(x)} \]

Solución

It seems that the expression is too complex for direct simplification. Let's break it down step by step using trigonometric identities to simplify it manually. The expression is: \[ \frac { \sin ( 90 - x ) \cdot \sin ( 980 - x ) } { \cos ( 3 - x ) \cdot \sin ( 180 - x ) \cdot \cos ( 90 - x ) } \] ### Step 1: Simplify the components 1. **Using the co-function identity**: \[ \sin(90 - x) = \cos(x) \] So, we can replace \(\sin(90 - x)\) with \(\cos(x)\). 2. **For \(\sin(180 - x)\)**: \[ \sin(180 - x) = \sin(x) \] 3. **For \(\cos(90 - x)\)**: \[ \cos(90 - x) = \sin(x) \] ### Step 2: Substitute these identities into the expression Now substituting these identities into the original expression, we get: \[ \frac { \cos(x) \cdot \sin(980 - x) } { \cos(3 - x) \cdot \sin(x) \cdot \sin(x) } \] This simplifies to: \[ \frac { \cos(x) \cdot \sin(980 - x) } { \cos(3 - x) \cdot \sin^2(x) } \] ### Step 3: Final expression Thus, the simplified form of the original expression is: \[ \frac { \cos(x) \cdot \sin(980 - x) } { \cos(3 - x) \cdot \sin^2(x) } \] This is the simplified version of the given expression. If you need further calculations or evaluations, please specify!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the sine and cosine functions are periodic? For example, the sine function has a period of \(360^\circ\), meaning that \(\sin(x) = \sin(x + 360n)\) for any integer \(n\). This periodic nature can simplify calculations, especially in complex trigonometric expressions like the one here. Additionally, utilizing angle identities, such as \(\sin(90^\circ - x) = \cos(x)\), can help reduce the expression significantly. When manipulating trigonometric functions, it's important to keep track of common mistakes, such as misapplying angle identities. A frequent error occurs when switching between sine and cosine without considering the angle relationships. Also, ensuring that angles are in the same measure (degrees vs. radians) can save headaches later! Simplifying expressions step by step often helps in identifying the correct values without getting tangled up.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad