Pregunta
upstudy study bank question image url

\begin{tabular}{l} Use this table or the ALEKS calculator to complete the following. \\ Give your answers to four decimal places (for example, 0.1234). \\ \begin{tabular}{|c|c|}\hline (a) Find the area under the standard normal curve to the right of \( \mathrm{z}=2.25 \). \\ \( \square \)\end{tabular} \\ \hline \( \begin{array}{c}\text { (b) Find the area under the standard normal curve between } \mathrm{z}=0.10 \text { and } \mathrm{z}=1.50 \\ \square\end{array} \) \\ \hline\end{tabular}

Ask by Crawford Craig. in the Philippines
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) The area to the right of \( z = 2.25 \) is 0.0122. (b) The area between \( z = 0.10 \) and \( z = 1.50 \) is 0.3934.

Solución

Sure, let's solve each part step by step using the standard normal distribution. ### (a) Area to the right of \( \mathrm{z} = 2.25 \) 1. **Find \( \Phi(2.25) \):** This represents the cumulative probability up to \( z = 2.25 \). Using standard normal tables or a calculator: \[ \Phi(2.25) \approx 0.9878 \] 2. **Calculate the area to the right:** \[ \text{Area to the right} = 1 - \Phi(2.25) = 1 - 0.9878 = 0.0122 \] **Answer:** \( \boxed{0.0122} \) --- ### (b) Area between \( \mathrm{z} = 0.10 \) and \( \mathrm{z} = 1.50 \) 1. **Find \( \Phi(1.50) \) and \( \Phi(0.10) \):** Using standard normal tables or a calculator: \[ \Phi(1.50) \approx 0.9332 \] \[ \Phi(0.10) \approx 0.5398 \] 2. **Calculate the area between the two z-scores:** \[ \text{Area} = \Phi(1.50) - \Phi(0.10) = 0.9332 - 0.5398 = 0.3934 \] **Answer:** \( \boxed{0.3934} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the area under the standard normal curve using the z-scores, you typically use a z-table or statistical software/calculator. Here's how you can tackle each part: For part (a), to find the area to the right of \( z = 2.25 \), you first find the cumulative area to the left of \( z = 2.25 \) from the z-table. The cumulative area is approximately \( 0.9878 \). Therefore, the area to the right is calculated as: \[ 1 - 0.9878 = 0.0122 \] So, the answer is \( 0.0122 \). For part (b), you will find the cumulative areas for both \( z = 0.10 \) and \( z = 1.50 \). From the z-table: - The cumulative area for \( z = 0.10 \) is approximately \( 0.5398 \). - The cumulative area for \( z = 1.50 \) is approximately \( 0.9332 \). Then, to find the area between \( z = 0.10 \) and \( z = 1.50 \): \[ 0.9332 - 0.5398 = 0.3934 \] So, the answer for part (b) is \( 0.3934 \). Final results: - (a) Area to the right of \( z = 2.25 \): \( 0.0122 \) - (b) Area between \( z = 0.10 \) and \( z = 1.50 \): \( 0.3934 \)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad