Pregunta
upstudy study bank question image url

A microwave has a frequency of 90 GHz, which is the same as \( 9.0 \times 10^{10} \mathrm{~Hz} \). What is the energy of electromagnetic radiation from the microwave? \( \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \) \( [?] \times 10^{[?]} \mathrm{J} \)

Ask by Pollard Powers. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The energy of the electromagnetic radiation from the microwave is approximately \( 5.96 \times 10^{-23} \, \text{J} \).

Solución

To find the energy of electromagnetic radiation from the microwave, we can use the formula: \[ E = h \cdot f \] where: - \( E \) is the energy, - \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)), - \( f \) is the frequency of the radiation (\( 9.0 \times 10^{10} \, \text{Hz} \)). Now, let's calculate the energy step by step. 1. **Substituting the values into the formula:** \[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \cdot (9.0 \times 10^{10} \, \text{Hz}) \] 2. **Calculating the product:** \[ E = 6.626 \times 9.0 \times 10^{-34} \times 10^{10} \] 3. **Calculating \( 6.626 \times 9.0 \):** \[ 6.626 \times 9.0 = 59.634 \] 4. **Combining the powers of ten:** \[ 10^{-34} \times 10^{10} = 10^{-24} \] 5. **Putting it all together:** \[ E = 59.634 \times 10^{-24} \, \text{J} \] 6. **Expressing in scientific notation:** To express \( 59.634 \) in scientific notation, we can write it as \( 5.9634 \times 10^1 \). Therefore: \[ E = 5.9634 \times 10^1 \times 10^{-24} = 5.9634 \times 10^{-23} \, \text{J} \] Thus, the energy of the electromagnetic radiation from the microwave is: \[ E \approx 5.96 \times 10^{-23} \, \text{J} \] In the requested format, the answer is: \[ [5.96] \times 10^{[-23]} \, \text{J} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the energy of electromagnetic radiation from the microwave, we can use the formula: \[ E = h \cdot f \] where \( E \) is the energy, \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)), and \( f \) is the frequency (\( 9.0 \times 10^{10} \, \text{Hz} \)). Substituting the values: \[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (9.0 \times 10^{10} \, \text{Hz}) \] Calculating this gives: \[ E = 5.9634 \times 10^{-23} \, \text{J} \] So, rounding it appropriately, the energy of electromagnetic radiation from the microwave is approximately: \[ 5.96 \times 10^{-23} \, \text{J} \] The answer can be written as \( 5.96 \times 10^{-23} \). To match your desired output: \( 5.96 \times 10^{-23} \mathrm{~J} \) --- It's fascinating to consider that the microwaves we cook our food with are the same type of energy waves that power our Wi-Fi and mobile networks! The frequencies that allow microwave ovens to heat food also play a crucial role in communication technology, seamlessly blending food-making with information sharing. Microwaves have a key role in everyday life, but some common mistakes when using them include not covering food, leading to splatters and uneven heating. Always use a microwave-safe container to prevent unwanted reactions between materials and the microwave's heating process!

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad