\begin{tabular}{l} (iv) From the graph, estimate the co-ordinates of the local maximum point and the local \\ minimum point of \( g(x) \), as accurately as possible. \\ Local maximum point: \\ Local minimum point: \\ different function, \( h(x) \), has the following equation: \\ Find \( h^{\prime}(x) \), the derivative of \( h(x) \) \\ \( h^{\prime}(x)=x^{3}+2 x^{2}-x-8 \) \\ \hline (x) \end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The local maximum point, based on a standard graph shape, is typically where the function peaks before descending. For \( g(x) \), let's estimate this point at coordinates \( (a, b) \). The local minimum point occurs in the valley where the function dips before rising again, so you might find it around \( (c, d) \). Without the specific graph, let’s say the local maximum could be \( (2, 5) \) and the local minimum around \( (-1, -2) \). Now, regarding the derivative \( h^{\prime}(x) = x^{3} + 2x^{2} - x - 8 \), it gives insight into the behavior of the function. To find where the function has its critical points (local max, min), you can set this derivative to zero and solve for \( x \). This helps in identifying potential turning points, so you can plan your next steps and determine the nature of these points with second derivative tests or a sign chart.