A landscape architect planned a flower garden in the shape of a parallelogram. If the base and height are multiplied by \( \frac{1}{2} \) to create a new parallelogram, what is the new area? Round to the nearest unit, if necessary.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The area of a parallelogram is calculated using the formula: Area = base × height. If the base and height are both multiplied by \( \frac{1}{2} \), the new area can be determined by plugging these values into the formula. Let's denote the original base as \( b \) and the original height as \( h \). The original area is \( A = b \times h \). After scaling down, the new base becomes \( \frac{b}{2} \) and the new height becomes \( \frac{h}{2} \). Thus, the new area \( A' \) is: \[ A' = \left(\frac{b}{2}\right) \times \left(\frac{h}{2}\right) = \frac{1}{4} (b \times h) \] So, the new area is \( \frac{1}{4} \) of the original area. If you round it to the nearest unit and provided the original area, you'd get the exact new area!