Pregunta
upstudy study bank question image url

(5) \( 72 ; 252 \quad \) (6) \( \quad 270 ; 300 \quad \) (7) \( 135 ; 315 \) (9) \( 91 ; 117 ; 231 \quad \) (10) \( \quad 10 ; 92 ; 115 \) Two very large numbers, number A and number B , are decomposed into prime numbers follows: number \( \mathrm{A}=2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \) number \( \mathrm{B}=2^{2000} \times 3^{50} \times 5^{30} \times 11 \) (1) Write down the HCF of these numbers, as a product of prime factors. (2) Write down the LCM of these numbers, as a product of prime factors. OS is a comparison between two numbers or two quantities with the same unit.

Ask by Klein Bowers. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**HCF of A and B**: \( 2^{1000} \times 3^{50} \times 5^{20} \) **LCM of A and B**: \( 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the highest common factor (HCF) and the least common multiple (LCM) of the two numbers A and B, we start by examining their prime factorizations. The HCF is calculated by taking the lowest power of each prime factor present in both A and B. For our numbers: - For 2: min(1000, 2000) = 1000 - For 3: min(100, 50) = 50 - For 5: min(20, 30) = 20 - For 7: min(3, 0) = 0 - For 11: min(0, 1) = 0 Thus, the HCF of A and B is: \[ \text{HCF} = 2^{1000} \times 3^{50} \times 5^{20} \] For the LCM, we take the highest power of each prime factor: - For 2: max(1000, 2000) = 2000 - For 3: max(100, 50) = 100 - For 5: max(20, 30) = 30 - For 7: max(3, 0) = 3 - For 11: max(0, 1) = 1 Thus, the LCM of A and B is: \[ \text{LCM} = 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11^1 \] Did you know that prime factorization has been used since ancient times? The ancient Greeks, particularly Euclid, studied numbers and their properties, which laid the groundwork for number theory as we know it today. His work, "Elements," introduced methods to find the greatest common divisor, a concept that can still be seen in modern mathematics! For those keen on diving deeper into the world of numbers, consider exploring resources such as "Elementary Number Theory" by David M. Burton or “An Introduction to the Theory of Numbers” by G.H. Hardy and E.M. Wright. These texts offer fascinating insights into prime numbers, factors, and various aspects of number theory that can provide a solid foundation for enthusiasts!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad