Pregunta
upstudy study bank question image url

319. \( \lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x} \).

Ask by Cummings Pollard. in Uzbekistan
Nov 26,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x} = \frac{2}{3} \) yoki 0.6.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To evaluate the limit \( \lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x} \), we can first substitute \( x = 0 \) directly into the expression. However, this gives us an indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which is applicable in such cases. We differentiate the numerator and the denominator: 1. The derivative of the numerator \( 2 \arcsin x \) is: \[ \frac{d}{dx}(2 \arcsin x) = 2 \cdot \frac{1}{\sqrt{1 - x^2}}. \] 2. The derivative of the denominator \( 3x \) is: \[ \frac{d}{dx}(3x) = 3. \] Now we apply L'Hôpital's Rule: \[ \lim _{x \rightarrow 0} \frac{2 \arcsin x}{3 x} = \lim _{x \rightarrow 0} \frac{2 / \sqrt{1 - x^2}}{3}. \] Evaluating the limit as \( x \) approaches 0: \[ \frac{2}{3 \sqrt{1 - 0^2}} = \frac{2}{3 \cdot 1} = \frac{2}{3}. \] Thus, the limit is: \[ \boxed{\frac{2}{3}}. \]

preguntas relacionadas

Explain why if a runner completes a \( 6.2-\mathrm{mi} \) race in 33 min , then he must have been running at exactly \( 11 \mathrm{mi} / \mathrm{hr} \) at least twice in the race. Assume the runner's speed at the finish line is zero. Select the correct choice and fill in the answer boxes to complete your choice. (Round to one decimal place as needed.) A. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By the intermediate value theorem, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least twice. By MVT, all speeds between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) were reached. Because the initial and final speed was \( \square \mathrm{mi} / \mathrm{hr} \), the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race. B. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By MVT, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least twice. By the intermediate value theorem, the speed between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) was constant. Therefore, the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race. C. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By MVT, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least once. By the intermediate value theorem, all speeds between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) were reached. Because the initial and final speed was \( \square \mathrm{mi} / \mathrm{hr} \), the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race.

Latest Calculus Questions

Explain why if a runner completes a \( 6.2-\mathrm{mi} \) race in 33 min , then he must have been running at exactly \( 11 \mathrm{mi} / \mathrm{hr} \) at least twice in the race. Assume the runner's speed at the finish line is zero. Select the correct choice and fill in the answer boxes to complete your choice. (Round to one decimal place as needed.) A. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By the intermediate value theorem, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least twice. By MVT, all speeds between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) were reached. Because the initial and final speed was \( \square \mathrm{mi} / \mathrm{hr} \), the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race. B. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By MVT, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least twice. By the intermediate value theorem, the speed between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) was constant. Therefore, the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race. C. The average speed is \( \square \mathrm{mi} / \mathrm{hr} \). By MVT, the speed was exactly \( \square \mathrm{mi} / \mathrm{hr} \) at least once. By the intermediate value theorem, all speeds between \( \square \) and \( \square \mathrm{mi} / \mathrm{hr} \) were reached. Because the initial and final speed was \( \square \mathrm{mi} / \mathrm{hr} \), the speed of \( 11 \mathrm{mi} / \mathrm{hr} \) was reached at least twice in the race.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad