Pregunta
upstudy study bank question image url

(c) Container \( P \) has 360 g of flour \( \frac{3}{7} \) of the flour in container \( Q \) is poured into container \( P \). Then \( \frac{4}{9} \) of flour in container \( P \) is poured into the empty container, \( R \). Now, container \( R \) has 400 g of flour. Calculate, in \( g \), the mass of the original flour in container \( Q \).

Ask by Tyler Evans. in Malaysia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The original mass of flour in container \( Q \) was **1260 g**.

Solución

Let's break down the problem step by step to find the mass of the original flour in container \( Q \). 1. **Initial Amounts:** - Container \( P \) initially has \( 360 \) g of flour. - Let \( Q \) be the original amount of flour in container \( Q \). 2. **Transferring Flour from \( Q \) to \( P \):** - \( \frac{3}{7} \) of the flour in \( Q \) is poured into \( P \). - The amount poured from \( Q \) to \( P \) is \( \frac{3}{7}Q \). - After this transfer, the total flour in \( P \) becomes: \[ 360 \text{ g} + \frac{3}{7}Q \] 3. **Transferring Flour from \( P \) to \( R \):** - \( \frac{4}{9} \) of the flour in \( P \) is poured into the empty container \( R \). - The amount poured from \( P \) to \( R \) is: \[ \frac{4}{9} \left( 360 + \frac{3}{7}Q \right) \] - We are given that container \( R \) ends up with \( 400 \) g of flour: \[ \frac{4}{9} \left( 360 + \frac{3}{7}Q \right) = 400 \] 4. **Solving for \( Q \):** - Multiply both sides of the equation by \( \frac{9}{4} \) to isolate the expression inside the parentheses: \[ 360 + \frac{3}{7}Q = 400 \times \frac{9}{4} = 900 \] - Subtract \( 360 \) from both sides: \[ \frac{3}{7}Q = 900 - 360 = 540 \] - Multiply both sides by \( \frac{7}{3} \) to solve for \( Q \): \[ Q = 540 \times \frac{7}{3} = 1260 \text{ g} \] **Answer:** The original mass of flour in container \( Q \) was **1260 g**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let the mass of the original flour in container \( Q \) be \( x \) grams. First, we know that \( \frac{3}{7} \) of the flour from \( Q \) is poured into \( P \). Therefore, the amount of flour added to \( P \) from \( Q \) is: \[ \text{Flour poured from } Q = \frac{3}{7}x \] Now, after pouring this into container \( P \), the total amount of flour in \( P \) becomes: \[ \text{Total flour in } P = 360 + \frac{3}{7}x \] Next, \( \frac{4}{9} \) of the flour in \( P \) is poured into the empty container \( R \). The amount transferred to \( R \) is: \[ \text{Flour in } R = \frac{4}{9} \left( 360 + \frac{3}{7}x \right) \] It is given that container \( R \) now contains 400 g of flour. So we can set up the equation: \[ \frac{4}{9} \left( 360 + \frac{3}{7}x \right) = 400 \] To eliminate the fraction, we can multiply both sides by 9: \[ 4 \left( 360 + \frac{3}{7}x \right) = 3600 \] Next, divide by 4: \[ 360 + \frac{3}{7}x = 900 \] Now, subtract 360 from both sides: \[ \frac{3}{7}x = 540 \] To find \( x \), multiply both sides by \( \frac{7}{3} \): \[ x = 540 \times \frac{7}{3} = 1260 \] So, the mass of the original flour in container \( Q \) is: \[ \boxed{1260 \, \text{g}} \]

Latest Algebra Questions

Point-Slope Form For each row, you and your partner will answer the question shown. Begin by reading each scenario. Using point-slope form, write the equation of the line that describes this scenario. Then, rewrite the equation in slope-intercept form. You and your partner should get the same answer for slope-intercept form. If you disagree, work together to reach an agreement. Partner A 1. In order to enter the state fair, there is an admission cost. Each game is \( \$ 3 \). Steven went to the state fair, played 4 games and spent a total of \( \$ 20 \) on admission and games. 2. At a chili cook off, people pay \( \$ 0.50 \) for each sample bowl of chili. The total cost was \( \$ 4.50 \) for 3 bowls of chili. 3. CJ loves Girl Scout cookies. He eats 3 cookies per hour. After 5 hours, there are 24 cookies left in the box. 4. An oil tank is being filled at a constant rate of 0.2 gallons per minute. After 10 minutes, there are 5 gallons of oil in the tank. 5. The total cost of renting a vacation home includes a deposit and a daily rental fee of \( \$ 125 \). A family rents a vacation home for 5 days and pays \( \$ 700 \). Partner B 1. In order to enter the state fair, there is an admission cost. Each game is \( \$ 3 \). Steven went to the state fair, played 10 games and spent a total of \( \$ 38 \) on admission and games. 2. At a chili cook off, people pay \( \$ 0.50 \) for each sample bowl of chili. The total cost was \( \$ 6.50 \) for 7 bowls of chili. 3. CJ loves Girl Scout cookies. He eats 3 cookies per hour. After 3 hours, there are 30 cookies left in the box. 4. An oil tank is being filled at a constant rate of 0.2 gallons per minute. After 5 minutes, there are 4 gallons of oil in the tank. 5. The total cost of renting a vacation home includes a deposit and a daily rental fee of \( \$ 125 \). A family rents a vacation home for 3 days and pays \( \$ 450 \). Talk About it! Return to Examples 1-5. Identify the \( y \)-intercept in each scenario. Explain the meaning of the \( y \)-intercept in terms of the context.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad