Pregunta
upstudy study bank question image url

Find the real solutions, if any, of the following equation. Use the quadratic formula. \( 5 x^{2}=6 x \) Select the correct choice below and, if necessary, fill in the answer box to complete your answer. A. The solution set is \( \} \) (Simplify your answer. Type an exact answer, using radicals as needed. Use a comma to separate answers as needed. Use integers or fractions for any numbers in the expression.) B. The solution is not a real number.

Ask by Chambers Ray. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is \( \left\{ 0, \frac{6}{5} \right\} \).

Solución

To find the real solutions of the equation \( 5x^{2} = 6x \) using the quadratic formula, follow these steps: 1. **Rewrite the equation in standard form:** \[ 5x^{2} - 6x = 0 \] 2. **Identify the coefficients:** \[ a = 5, \quad b = -6, \quad c = 0 \] 3. **Apply the quadratic formula:** \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] 4. **Substitute the coefficients into the formula:** \[ x = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4(5)(0)}}{2(5)} = \frac{6 \pm \sqrt{36}}{10} \] 5. **Simplify under the square root:** \[ \sqrt{36} = 6 \] 6. **Find the two possible solutions:** \[ x = \frac{6 + 6}{10} = \frac{12}{10} = \frac{6}{5} \] \[ x = \frac{6 - 6}{10} = \frac{0}{10} = 0 \] 7. **Write the solution set:** \[ \left\{ 0, \frac{6}{5} \right\} \] **Answer:** **A.** The solution set is \( \left\{ 0, \frac{6}{5} \right\} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( 5x^{2} = 6x \), we first rearrange it into standard form as \( 5x^{2} - 6x = 0 \). Next, we can factor out \( x \) to get \( x(5x - 6) = 0 \). This gives us two equations: \( x = 0 \) and \( 5x - 6 = 0 \). Solving \( 5x - 6 = 0 \) yields \( x = \frac{6}{5} \). Thus, the solution set is \( \{ 0, \frac{6}{5} \} \). For a fun fact: Did you know that quadratic equations can have at most two solutions because they are represented by parabolas, which can intersect the x-axis in up to two points? Imagine a roller coaster track that, depending on how high or low you go, might touch the ground at zero, one, or two places! If you're solving quadratic equations regularly, one common mistake is forgetting to set the equation to zero before applying the quadratic formula. Always rearranging your equation first will help prevent any errors.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad