Pregunta
upstudy study bank question image url

Question 2 Find the \( x \)-intercept and \( y \)-intercept of the graph of \( 2 x-2 y=-2 \). Then graph. \( x \)-intercept \( =(0,0) \)

Ask by Lane Schmidt. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \)-intercept is \( (-1, 0) \) and the \( y \)-intercept is \( (0, 1) \). To graph the equation \( 2x - 2y = -2 \), plot these intercepts and draw a straight line through them.

Solución

Let's find the \( x \)-intercept and \( y \)-intercept of the equation \( 2x - 2y = -2 \), and then describe how to graph it. ### 1. Finding the Intercepts **a. \( x \)-intercept** The \( x \)-intercept occurs where the graph crosses the \( x \)-axis. At this point, the value of \( y \) is 0. Set \( y = 0 \) in the equation and solve for \( x \): \[ 2x - 2(0) = -2 \\ 2x = -2 \\ x = \frac{-2}{2} \\ x = -1 \] So, the \( x \)-intercept is **\( (-1,\ 0) \)**. **b. \( y \)-intercept** The \( y \)-intercept occurs where the graph crosses the \( y \)-axis. At this point, the value of \( x \) is 0. Set \( x = 0 \) in the equation and solve for \( y \): \[ 2(0) - 2y = -2 \\ -2y = -2 \\ y = \frac{-2}{-2} \\ y = 1 \] So, the \( y \)-intercept is **\( (0,\ 1) \)**. ### 2. Summary of Intercepts - **\( x \)-intercept**: \( (-1,\ 0) \) - **\( y \)-intercept**: \( (0,\ 1) \) > **Note:** Your original statement of the \( x \)-intercept as \( (0,\, 0) \) is incorrect. The correct \( x \)-intercept is \( (-1,\ 0) \). ### 3. Graphing the Equation To graph the equation \( 2x - 2y = -2 \): 1. **Plot the Intercepts**: - Plot the \( x \)-intercept at \( (-1, 0) \). - Plot the \( y \)-intercept at \( (0, 1) \). 2. **Draw the Line**: - Use a ruler to draw a straight line passing through the two intercepts. 3. **Extend the Line**: - Extend the line in both directions beyond the intercepts. 4. **Arrowheads**: - Add arrowheads to indicate that the line continues infinitely in both directions. 5. **Label the Line**: - Optionally, label the line with its equation \( 2x - 2y = -2 \). Here's a **diagrammatic representation**: ``` y | 2 | * 1 | | (0,1) 0 |--------*--------x (-1,0) ``` - The point \( (-1, 0) \) is the \( x \)-intercept. - The point \( (0, 1) \) is the \( y \)-intercept. - The line connecting these points represents the equation \( 2x - 2y = -2 \). ### 4. Alternative Form For easier graphing, you can rewrite the equation in **slope-intercept form** (\( y = mx + b \)): \[ 2x - 2y = -2 \\ -2y = -2x - 2 \\ y = x + 1 \] - **Slope (\( m \))**: 1 - **\( y \)-intercept (\( b \))**: 1 This form confirms the \( y \)-intercept at \( (0, 1) \) and makes it easy to plot additional points if needed.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the \( x \)-intercept of the equation \( 2x - 2y = -2 \), set \( y = 0 \). This simplifies to \( 2x = -2 \) or \( x = -1 \). Therefore, the \( x \)-intercept is \( (-1, 0) \). For the \( y \)-intercept, set \( x = 0 \) which gives \( -2y = -2 \) or \( y = 1 \). Hence, the \( y \)-intercept is \( (0, 1) \). Now, plot these points on a graph and draw a straight line through them! You might want to grab a different color marker for graphing! Start with the \( x \)-intercept at (-1, 0) on the left side and the \( y \)-intercept at (0, 1) up above. Now, use a ruler to connect these dots, and voilà! You’ll have a line cutting through your graph – it’s like connecting the dots, but with a math twist!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad