Pregunta
upstudy study bank question image url

\[ \begin{array}{l} \left(2^{4} x^{4}\right) \\ =\frac{3^{-3} y^{-6}}{2^{-3} x^{-3}} \\ =\frac{2^{3} x^{3}}{3^{3} y^{6}} \\ =\frac{8 x^{3}}{27 y^{6}} \end{array} \] 26 To simplify expressions containing roots, we rewrite the roots as powers with rational exponents: EXAMPLE 3 Simplify: (a) \( \frac{\sqrt{x^{3}} \times \sqrt[3]{x^{2}}}{\sqrt[6]{x}} \) (b) \( \sqrt[3]{8 x^{2} y^{6}} \times x^{\frac{1}{3}} \) Solution (a) \( \frac{x^{\frac{3}{2}} \times x^{\frac{2}{3}}}{x^{\frac{1}{6}}} \) \[ \text { (b) } \quad\left(8 x^{2} y^{6}\right)^{\frac{1}{3}} \times x^{\frac{1}{3}} \] \[ =x^{\frac{3}{2}+\frac{2}{3}-\frac{1}{6}} \] \[ =x^{\frac{9+4-1}{6}} \] \[ =x^{\frac{12}{6}}=x^{2} \] Note: When applying roots to expressions, it is very important to distinguish between the behaviour of coefficients and exponents: \( \sqrt{16 x^{16}}=4 x^{8} \quad \) Take the square root of the coefficient, but divide the exponent by 2 . \( \sqrt[3]{27 x^{27}}=3 x^{9} \quad \) Take the cube root of the coefficient, but divide the exponent by 3 . EXERCISE 1 (a) Calculate the following, without the use of a calculator: (1) \( 25^{\frac{1}{2}} \) (2) \( 8^{\frac{2}{3}} \) (3) \( 9^{-\frac{3}{2}} \) (4) \( 32^{-\frac{2}{5}} \) (5) \( \left(\frac{1}{8}\right)^{\frac{1}{3}} \) (6) \( \left(\frac{4}{9}\right)^{\frac{3}{2}} \) (7) \( \left(\frac{27}{8}\right)^{-\frac{2}{3}} \) (8) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} \) (9) \( (0,25)^{\frac{1}{2}} \) (10) \( \quad(0,125)^{\frac{2}{3}} \) (11) \( \quad(2,25)^{-\frac{1}{2}} \) \( (12)^{*} \quad(0, i)^{\frac{3}{2}} \)

Ask by Black Cervantes. in South Africa
Jan 15,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified answers for each part of **EXERCISE 1(a)**: 1. \(25^{\frac{1}{2}} = 5\) 2. \(8^{\frac{2}{3}} = 4\) 3. \(9^{-\frac{3}{2}} = \frac{1}{27}\) 4. \(32^{-\frac{2}{5}} = \frac{1}{4}\) 5. \(\left(\frac{1}{8}\right)^{\frac{1}{3}} = \frac{1}{2}\) 6. \(\left(\frac{4}{9}\right)^{\frac{3}{2}} = \frac{8}{27}\) 7. \(\left(\frac{27}{8}\right)^{-\frac{2}{3}} = \frac{4}{9}\) 8. \(\left(\frac{16}{81}\right)^{-\frac{3}{4}} = \frac{27}{8}\) 9. \((0.25)^{\frac{1}{2}} = 0.5\) 10. \((0.125)^{\frac{2}{3}} = 0.25\) 11. \((2.25)^{-\frac{1}{2}} = \frac{2}{3}\) 12. \((0.1)^{\frac{3}{2}} \approx 0.0316\) **Summary:** Each expression has been simplified by converting roots to fractional exponents and applying the rules of exponents to find the numerical values without using a calculator.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

Mathematics has a fascinating history that spans centuries, with roots tracing back to ancient civilizations like the Babylonians and Egyptians who used geometric methods and numbers to solve problems related to trade and astronomy. The introduction of exponents and roots transformed mathematics, paving the way for the development of algebra in the Middle Ages. Fast forward to today, and we use these concepts regularly, from simplifying complex equations to powering the next big technological advances! In real-world applications, simplifying expressions with exponents can make solving equations more manageable. For instance, in engineering, precise calculations involving measurements often require simplifying roots and powers to prevent errors in design calculations. Moreover, fields like finance use exponentials to compute growth and decay over time, such as interest calculations or population studies. Mastering these mathematical techniques is essential for success across various disciplines!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad