\[ \begin{array}{l} \left(2^{4} x^{4}\right) \\ =\frac{3^{-3} y^{-6}}{2^{-3} x^{-3}} \\ =\frac{2^{3} x^{3}}{3^{3} y^{6}} \\ =\frac{8 x^{3}}{27 y^{6}} \end{array} \] 26 To simplify expressions containing roots, we rewrite the roots as powers with rational exponents: EXAMPLE 3 Simplify: (a) \( \frac{\sqrt{x^{3}} \times \sqrt[3]{x^{2}}}{\sqrt[6]{x}} \) (b) \( \sqrt[3]{8 x^{2} y^{6}} \times x^{\frac{1}{3}} \) Solution (a) \( \frac{x^{\frac{3}{2}} \times x^{\frac{2}{3}}}{x^{\frac{1}{6}}} \) \[ \text { (b) } \quad\left(8 x^{2} y^{6}\right)^{\frac{1}{3}} \times x^{\frac{1}{3}} \] \[ =x^{\frac{3}{2}+\frac{2}{3}-\frac{1}{6}} \] \[ =x^{\frac{9+4-1}{6}} \] \[ =x^{\frac{12}{6}}=x^{2} \] Note: When applying roots to expressions, it is very important to distinguish between the behaviour of coefficients and exponents: \( \sqrt{16 x^{16}}=4 x^{8} \quad \) Take the square root of the coefficient, but divide the exponent by 2 . \( \sqrt[3]{27 x^{27}}=3 x^{9} \quad \) Take the cube root of the coefficient, but divide the exponent by 3 . EXERCISE 1 (a) Calculate the following, without the use of a calculator: (1) \( 25^{\frac{1}{2}} \) (2) \( 8^{\frac{2}{3}} \) (3) \( 9^{-\frac{3}{2}} \) (4) \( 32^{-\frac{2}{5}} \) (5) \( \left(\frac{1}{8}\right)^{\frac{1}{3}} \) (6) \( \left(\frac{4}{9}\right)^{\frac{3}{2}} \) (7) \( \left(\frac{27}{8}\right)^{-\frac{2}{3}} \) (8) \( \left(\frac{16}{81}\right)^{-\frac{3}{4}} \) (9) \( (0,25)^{\frac{1}{2}} \) (10) \( \quad(0,125)^{\frac{2}{3}} \) (11) \( \quad(2,25)^{-\frac{1}{2}} \) \( (12)^{*} \quad(0, i)^{\frac{3}{2}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Mathematics has a fascinating history that spans centuries, with roots tracing back to ancient civilizations like the Babylonians and Egyptians who used geometric methods and numbers to solve problems related to trade and astronomy. The introduction of exponents and roots transformed mathematics, paving the way for the development of algebra in the Middle Ages. Fast forward to today, and we use these concepts regularly, from simplifying complex equations to powering the next big technological advances! In real-world applications, simplifying expressions with exponents can make solving equations more manageable. For instance, in engineering, precise calculations involving measurements often require simplifying roots and powers to prevent errors in design calculations. Moreover, fields like finance use exponentials to compute growth and decay over time, such as interest calculations or population studies. Mastering these mathematical techniques is essential for success across various disciplines!