Pregunta
upstudy study bank question image url

Write a function in terms of \( t \) that represents the situation. A smartphone costs \( \$ 850 \), and its resell value decreases by \( 11.2 \% \) each year

Ask by Bowman French. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The resell value of the smartphone after \( t \) years is given by the function: \[ V(t) = 850 \times 0.888^t \]

Solución

To model the resell value of the smartphone over time, we can use an exponential decay function. Here's how to construct the function step-by-step: 1. **Initial Cost**: The initial cost of the smartphone is \$850. This serves as the starting value when \( t = 0 \). 2. **Depreciation Rate**: The resell value decreases by 11.2% each year. This means that each year, the smartphone retains \( 100\% - 11.2\% = 88.8\% \) of its value from the previous year. 3. **Exponential Decay Function**: The general form of an exponential decay function is: \[ V(t) = V_0 \times (1 - r)^t \] where: - \( V(t) \) is the value after \( t \) years, - \( V_0 \) is the initial value (\$850), - \( r \) is the depreciation rate (0.112). 4. **Substitute the Values**: \[ V(t) = 850 \times (1 - 0.112)^t \] \[ V(t) = 850 \times 0.888^t \] **Final Function**: \[ V(t) = 850 \times (0.888)^t \] **Example Usage**: - After 1 year: \[ V(1) = 850 \times 0.888^1 = 850 \times 0.888 = \$755 \] - After 2 years: \[ V(2) = 850 \times 0.888^2 \approx \$670.56 \] This function effectively models the decreasing resell value of the smartphone over time. \[ V(t) = 850 \times \left(0.888\right)^{\, t} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To represent the resale value of the smartphone over time in years, we can use an exponential decay function. The initial value of the smartphone is \( P = 850 \) dollars, and the rate of decrease is \( r = 0.112 \) (or 11.2%). The formula for the resale value \( V(t) \) after \( t \) years can be given by: \[ V(t) = P \times (1 - r)^t = 850 \times (1 - 0.112)^t = 850 \times (0.888)^t \] So, the function representing the situation is: \[ V(t) = 850 \times (0.888)^t \] This function will give the resale value of the smartphone after \( t \) years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad