Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions and then applying the appropriate transformations. \[ y=\sin \left(\frac{1}{9} x\right) \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To graph the function \( y=\sin \left(\frac{1}{9} x\right) \), we start with the standard sine function, \( y = \sin(x) \), which has a period of \( 2\pi \) and oscillates between -1 and 1. Now, the transformation we see here involves scaling the \( x \)-values by a factor of \( \frac{1}{9} \). This means we stretch the graph horizontally by a factor of 9. The new period of our transformed function will be calculated as follows: \[ \text{New period} = 9 \times 2\pi = 18\pi \] The amplitude remains the same, staying between -1 and 1. Next, we note down the key points of the shifted function: 1. \( (0, 0) \) 2. \( \left(\frac{18\pi}{4}, 1\right) = (4.5\pi, 1) \) 3. \( \left(\frac{18\pi}{2}, 0\right) = (9\pi, 0) \) 4. \( \left(\frac{27\pi}{4}, -1\right) = (6.75\pi, -1) \) 5. \( \left(18\pi, 0\right) \) Now, connect these points in a smooth sine wave curve, and you've got the graph of \( y = \sin\left(\frac{1}{9}x\right) \) stretching across the x-axis!