Add. \[ \frac{7}{8}+\frac{7}{10} \] \( \frac{7}{8}+\frac{7}{10}=\square \) (Type a whole number, fraction, or mixed numb
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To add the fractions \( \frac{7}{8} \) and \( \frac{7}{10} \), you first need a common denominator. The least common multiple (LCM) of 8 and 10 is 40. Now convert each fraction: \[ \frac{7}{8} = \frac{7 \times 5}{8 \times 5} = \frac{35}{40} \] \[ \frac{7}{10} = \frac{7 \times 4}{10 \times 4} = \frac{28}{40} \] Now add them together: \[ \frac{35}{40} + \frac{28}{40} = \frac{63}{40} \] So, \[ \frac{7}{8}+\frac{7}{10}=\frac{63}{40} \] Now, if you wanted to express \( \frac{63}{40} \) as a mixed number, it would be \( 1\frac{23}{40} \). In conclusion, the answer is \(\frac{63}{40}\) or \(1\frac{23}{40}\).