Pregunta
upstudy study bank question image url

Solve the inequality. (Enter your answer using interval notation.) \[ x^{3}+6 x^{2}-36 x \leq 216 \] Graph the solution set.

Ask by West Carlson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the inequality \(x^{3}+6x^{2}-36x \leq 216\) is \(x \leq 6\).

Solución

Solve the equation \( x^{3}+6x^{2}-36x \leq 216 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(x^{3}+6x^{2}-36x\leq 216\) - step1: Move the expression to the left side: \(x^{3}+6x^{2}-36x-216\leq 0\) - step2: Rewrite the expression: \(x^{3}+6x^{2}-36x-216=0\) - step3: Factor the expression: \(\left(x-6\right)\left(x+6\right)^{2}=0\) - step4: Separate into possible cases: \(\begin{align}&x-6=0\\&\left(x+6\right)^{2}=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=6\\&x=-6\end{align}\) - step6: Determine the test intervals: \(\begin{align}&x<-6\\&-66\end{align}\) - step7: Choose a value: \(\begin{align}&x_{1}=-7\\&x_{2}=0\\&x_{3}=7\end{align}\) - step8: Test the chosen value: \(\begin{align}&x<-6\textrm{ }\textrm{is the solution}\\&-66\textrm{ }\textrm{is not a solution}\end{align}\) - step9: Include the critical value: \(\begin{align}&x\leq -6\textrm{ }\textrm{is the solution}\\&-6\leq x\leq 6\textrm{ }\textrm{is the solution}\end{align}\) - step10: The final solution is \(x\leq 6:\) \(x\leq 6\) The solution to the inequality \(x^{3}+6x^{2}-36x \leq 216\) is \(x \leq 6\). To graph the solution set, we need to plot the points where \(x = 6\) and then shade the region to the left of this point. The graph will show all the values of \(x\) that satisfy the inequality \(x \leq 6\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \( x^{3}+6 x^{2}-36 x \leq 216 \), we first rearrange it to standard form: \[ x^{3}+6 x^{2}-36 x - 216 \leq 0. \] Next, let's find the roots of the corresponding equation \( x^{3}+6 x^{2}-36 x - 216 = 0 \). Using synthetic division or trial and error, we can find one root; let's say \( x = 6 \) is a root. Now, we can factor the polynomial: 1. Divide \( x^{3}+6x^{2}-36x-216 \) by \( x-6 \): - You should find \( x^{3} + 6x^{2} - 36x - 216 = (x - 6)(x^{2} + 12x + 36) \). 2. The quadratic can be rewritten as: - \( x^{2} + 12x + 36 = (x + 6)^{2} \). Thus, we can express the entire polynomial as: \[ (x - 6)(x + 6)^{2} \leq 0. \] Now we determine the roots: - The roots are \( x = 6 \) (single root) and \( x = -6 \) (double root). Next, we identify the intervals to test based on these roots: 1. \( (-\infty, -6) \) 2. \( (-6, 6) \) 3. \( (6, \infty) \) **Testing the intervals**: - For \( x < -6 \) (say \( x = -7 \)): - \( (-7 - 6)((-7 + 6)^{2}) \) is positive. - For \( -6 < x < 6 \) (say \( x = 0 \)): - \( (0 - 6)((0 + 6)^{2}) \) is negative. - For \( x > 6 \) (say \( x = 7 \)): - \( (7 - 6)((7 + 6)^{2}) \) is positive. **Conclusion**: The inequality is satisfied where it is less than or equal to zero, which occurs in the interval \([-6, 6]\). Putting this all together, the solution in interval notation is: \[ \boxed{[-6, 6]} \] To graph the solution, you would plot a closed circle (indicating that -6 and 6 are included in the solution set) along the x-axis, marking that everything between these points satisfies the inequality.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad