15. \( 3^{-2} \cdot 6^{2} \cdot 2^{-4} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( 3^{-2} \cdot 6^{2} \cdot 2^{-4} \), we can rewrite \( 6^{2} \) as \( (2 \cdot 3)^{2} = 2^{2} \cdot 3^{2} \). Now our expression looks like: \[ 3^{-2} \cdot (2^{2} \cdot 3^{2}) \cdot 2^{-4} \] Next, we can combine the like terms: \[ 3^{-2} \cdot 3^{2} = 3^{0} = 1 \] And for the base 2: \[ 2^{2} \cdot 2^{-4} = 2^{2 - 4} = 2^{-2} \] So, the entire expression simplifies to: \[ 2^{-2} \cdot 1 = 2^{-2} \] Finally, we can express \( 2^{-2} \) as: \[ \frac{1}{2^{2}} = \frac{1}{4} \] Thus, the final answer is: \[ \frac{1}{4} \]