Pregunta
upstudy study bank question image url

QUESTION B3 [20 Marks] a) Solve the logarithmic equation \[ \log _{2}(x-3)+\log _{2}(x)=2 . \] b) E13750 is invested at \( 2.514 \% \) compounded monthly. After how many years will the invest- ment exceed \( E 20000 \) ?

Pregunta hecha por un miembro premium de UpStudy a nuestro tutor en vivo.

Jan 15,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a) Solve the logarithmic equation:** \[ \log_{2}(x - 3) + \log_{2}(x) = 2 \] **Solution:** 1. Combine the logarithms: \[ \log_{2}(x(x - 3)) = 2 \] 2. Convert to exponential form: \[ x^2 - 3x = 4 \] 3. Solve the quadratic equation: \[ x = 4 \quad \text{or} \quad x = -1 \] 4. Verify solutions: - \( x = 4 \) is valid. - \( x = -1 \) is invalid. **Final Answer:** \( x = 4 \) --- **b) Determine after how many years the investment will exceed €20,000.** - **Initial Investment:** €13,750 - **Annual Interest Rate:** 2.514% - **Compounded Monthly:** 12 times per year - **Future Value:** €20,000 **Solution:** 1. Calculate monthly interest rate: \[ 0.2095\% \text{ per month} = 0.002095 \] 2. Use the compound interest formula: \[ 20,000 = 13,750 \times (1 + 0.002095)^{12t} \] 3. Solve for \( t \): \[ t \approx 15 \text{ years} \] **Final Answer:** It will take approximately **15 years** for the investment to exceed €20,000.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To tackle the logarithmic equation \( \log _{2}(x-3)+\log _{2}(x)=2 \), we can use the properties of logarithms to combine the two logarithmic terms. This gives us: \[ \log_{2}((x-3)x) = 2. \] Converting the logarithmic equation to its exponential form, we find: \[ (x-3)x = 2^{2} = 4. \] Expanding and rearranging the equation leads to: \[ x^2 - 3x - 4 = 0. \] Factoring gives us: \[ (x-4)(x+1) = 0. \] Thus, \( x = 4 \) or \( x = -1 \). Since \( x \) must be greater than 3 (due to the logarithm constraints), we have \( x = 4 \) as the only solution. For part b, we need to find the time \( t \) in years it takes for the investment of E13750 to exceed E20000 at a monthly compounded rate of \( 2.514\% \). The formula for compound interest is: \[ A = P(1 + \frac{r}{n})^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. In this case, we set up the equation: \[ 20000 < 13750(1 + \frac{0.02514}{12})^{12t}. \] Solving this inequality will give us the minimum time required for the investment to exceed E20000. After doing the calculations, you'll find that it's approximately 5.8 years. So, just under 6 years until you see those sweet returns!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad