2. (a) \( 3\left(2 x^{2}\right) \) \( \begin{array}{llll}\text { (b) }(5)\left(2 y^{2}\right) & \text { (c) } 3\left(5 r^{2}\right) & \text { (e) } 3\left(2 b^{2}\right) & \text { (h) }(-2)(-5 y) \\ \text { 3. (a) }(2 x)(4 x) & \text { (d) }(7)\left(4 a^{2}\right) & \text { (f) } 5\left(-2 x^{2}\right) & \text { (g) }-11\left(3 p^{2}\right)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Multiplying constants and variables together can sometimes feel like a dance, and it’s all about getting the right steps in place! When you multiply an expression like \(3(2x^2)\), you multiply the coefficients first, resulting in \(6x^2\). So fancy, right? Keep this in mind as you tackle the other expressions; you're working with the same concept of combining like terms! When working with expressions, be cautious of negative signs! For instance, in \((-2)(-5y)\), those negatives can turn into a positive because two negatives make a positive. This is a common pitfall. Remember to focus on the signs while calculating, and you'll glide through these problems like a pro!