Pregunta
upstudy study bank question image url

LMNP is a rectangle. Find the value of \( x \) and the length of each diagonal. \( L N=12 x-6 \) and \( M P=7 x+7 \) \( x=\frac{13}{5} \) (Simplify your answer.) \( L N=\frac{126}{5} \) (Simplify your answer.) MP \( =\square \) (Simplify your answer.)

Ask by Wood Garrett. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = \frac{13}{5} \), \( LN = \frac{126}{5} \), and \( MP = \frac{126}{5} \).

Solución

To solve for \( x \) and determine the lengths of the diagonals \( LN \) and \( MP \) in rectangle \( LMNP \), follow these steps: ### Step 1: Set Up the Equation In a rectangle, the diagonals are equal in length. Therefore, we can set the expressions for \( LN \) and \( MP \) equal to each other: \[ LN = MP \] \[ 12x - 6 = 7x + 7 \] ### Step 2: Solve for \( x \) Subtract \( 7x \) from both sides: \[ 12x - 7x - 6 = 7 \] \[ 5x - 6 = 7 \] Add \( 6 \) to both sides: \[ 5x = 13 \] Divide by \( 5 \): \[ x = \frac{13}{5} \] ### Step 3: Calculate \( LN \) Substitute \( x = \frac{13}{5} \) into the expression for \( LN \): \[ LN = 12x - 6 \] \[ LN = 12 \left( \frac{13}{5} \right) - 6 \] \[ LN = \frac{156}{5} - \frac{30}{5} = \frac{126}{5} \] ### Step 4: Calculate \( MP \) Substitute \( x = \frac{13}{5} \) into the expression for \( MP \): \[ MP = 7x + 7 \] \[ MP = 7 \left( \frac{13}{5} \right) + 7 \] \[ MP = \frac{91}{5} + \frac{35}{5} = \frac{126}{5} \] ### Summary of Results - **Value of \( x \):** \[ x = \frac{13}{5} \] - **Length of Diagonal \( LN \):** \[ LN = \frac{126}{5} \] - **Length of Diagonal \( MP \):** \[ MP = \frac{126}{5} \] Both diagonals \( LN \) and \( MP \) are equal in length, as expected in a rectangle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's substitute the value of \( x \) into the expressions for the lengths of the sides: 1. For \( LN \): \[ LN = 12x - 6 = 12\left(\frac{13}{5}\right) - 6 = \frac{156}{5} - \frac{30}{5} = \frac{126}{5} \] 2. For \( MP \): \[ MP = 7x + 7 = 7\left(\frac{13}{5}\right) + 7 = \frac{91}{5} + \frac{35}{5} = \frac{126}{5} \] Now, both lengths \( LN \) and \( MP \) are equal, which is expected in a rectangle. To find the length of the diagonal \( d \) of the rectangle \( LMNP \), we can use the Pythagorean theorem: \[ d = \sqrt{LN^2 + MP^2} \] Since \( LN = MP = \frac{126}{5} \): \[ d = \sqrt{\left(\frac{126}{5}\right)^2 + \left(\frac{126}{5}\right)^2} = \sqrt{2\left(\frac{126^2}{25}\right)} = \sqrt{\frac{2 \times 15876}{25}} = \sqrt{\frac{31752}{25}} = \frac{\sqrt{31752}}{5} \] Now, simplifying \( \sqrt{31752} \): \[ \sqrt{31752} = 6\sqrt{882} = 6 \times 21 \sqrt{2} = 126 \sqrt{2} \] Thus, \[ d = \frac{126 \sqrt{2}}{5} \] So, the answers are: \( x = \frac{13}{5} \), \( LN = \frac{126}{5} \), \( MP = \frac{126}{5} \), and the length of the diagonal \( d = \frac{126 \sqrt{2}}{5} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad