Pregunta
upstudy study bank question image url

The annual total revenue for a product is given by \( R(x)=45,000 x-5 x^{2} \) dollars, where \( x \) is the number of units sold. To maximize revenue, how many units must be sold? What is the maximum possible annual revenue? To maximize revenue, \( \square \) units must be sold. (Simplify your answer.)

Ask by Wyatt Christensen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To maximize revenue, **4,500 units** must be sold, and the **maximum possible annual revenue** is **\$101,250,000**.

Solución

To **maximize revenue**, we need to find the number of units \( x \) that maximizes the revenue function: \[ R(x) = 45{,}000x - 5x^2 \] This is a quadratic function of the form \( R(x) = ax^2 + bx + c \), where: - \( a = -5 \) (since the coefficient of \( x^2 \) is negative, the parabola opens downward, indicating a maximum point) - \( b = 45{,}000 \) The number of units \( x \) that maximizes the revenue can be found using the vertex formula for a parabola: \[ x = -\frac{b}{2a} \] Plugging in the values: \[ x = -\frac{45{,}000}{2(-5)} = \frac{45{,}000}{10} = 4{,}500 \] So, **4,500 units** must be sold to maximize revenue. Next, to find the **maximum possible annual revenue**, substitute \( x = 4{,}500 \) back into the revenue function: \[ R(4{,}500) = 45{,}000 \times 4{,}500 - 5 \times (4{,}500)^2 \] Calculate each term: 1. \( 45{,}000 \times 4{,}500 = 202{,}500{,}000 \) 2. \( 5 \times (4{,}500)^2 = 5 \times 20{,}250{,}000 = 101{,}250{,}000 \) Subtract the second term from the first: \[ R(4{,}500) = 202{,}500{,}000 - 101{,}250{,}000 = 101{,}250{,}000 \text{ dollars} \] **Summary:** - **To maximize revenue, 4,500 units must be sold.** - **The maximum possible annual revenue is \$101,250,000.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To maximize revenue, we need to find the value of \( x \) that maximizes the function \( R(x) = 45,000x - 5x^2 \). This is a quadratic function and opens downwards (since the coefficient of \( x^2 \) is negative), so its maximum occurs at the vertex. The vertex \( x \) can be found using the formula \( x = -\frac{b}{2a} \), where \( a = -5 \) and \( b = 45,000 \). Plugging in the values, we get: \[ x = -\frac{45,000}{2 \cdot (-5)} = \frac{45,000}{10} = 4,500 \] To find the maximum possible annual revenue, substitute \( x = 4,500 \) back into the revenue function: \[ R(4,500) = 45,000 \cdot 4,500 - 5 \cdot (4,500)^2 \] Calculating this gives: \[ R(4,500) = 202,500,000 - 101,250,000 = 101,250,000 \] Therefore, to maximize revenue, 4,500 units must be sold, leading to a maximum revenue of $101,250,000.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad