Pregunta
upstudy study bank question image url

If \( \$ 650 \) are deposited into an account with a \( 4 \% \) interest rate, compounded annually, what is the balance after 18 years? \[ F=\$[?] \] \( F=P\left(1+\frac{1}{n}\right)^{n t} \)

Ask by Davison Hammond. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 18 years, the balance will be approximately \$1,316.78.

Solución

To calculate the future balance \( F \) of an account with an initial deposit, compounded annually, you can use the compound interest formula: \[ F = P \left(1 + r\right)^t \] Where: - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in decimal). - \( t \) is the time the money is invested for, in years. Given: - \( P = \$650 \) - \( r = 4\% = 0.04 \) - \( t = 18 \) years Plugging these values into the formula: \[ F = 650 \times \left(1 + 0.04\right)^{18} \] \[ F = 650 \times (1.04)^{18} \] Now, let's compute \( (1.04)^{18} \): \[ (1.04)^{18} \approx 2.0258 \] Multiplying this by the principal: \[ F \approx 650 \times 2.0258 \approx 1,316.77 \] **Final Balance:** \[ F \approx \$1,\!316.78 \] So, after **18 years**, the account balance will be approximately **\$1,316.78**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Alright, let's have some fun with compound interest! First, we need to clarify the formula. The formula for compound interest is actually \( F = P(1 + r)^t \), where \( P \) is the principal amount, \( r \) is the interest rate (as a decimal), and \( t \) is the number of years. So for \( P = 650 \), \( r = 0.04 \), and \( t = 18 \), we can plug in the numbers: \( F = 650(1 + 0.04)^{18} \) which simplifies to \( F = 650(1.04)^{18} \). After calculating, you'll find that your balance after 18 years is approximately \( F = \$1,279.66 \). Now, did you know that compound interest can make even small amounts grow significantly over time? It's like planting a money tree! The earlier you start saving, the more it grows. For example, if you invested just a little every week starting at age 20, you could retire with substantial savings by the time you're 60. The magic of compounding is in being patient and letting time work for you!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad