3. The first three terms of the sequence \( 6 ; x ; y ; 27 \) form an arithmetic progression and the last three terms form a geometric progression. 3.1 Determine the values of \( x \) and \( y \). 4.2 State the arithmetic and geometric sequences for each of your solutions.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve for \( x \) and \( y \) in the sequence \( 6; x; y; 27 \), we start with the conditions for arithmetic and geometric progressions. For the arithmetic progression \( 6, x, y, 27 \): The difference between consecutive terms is constant, so we have: \( x - 6 = y - x = 27 - y \). Let the common difference be \( d \). Then we can express \( x \) and \( y \) as: \( x = 6 + d \) and \( y = 6 + 2d \). Setting \( 27 - y = d \) gives: \( 27 - (6 + 2d) = d \) This leads to: \( 27 - 6 - 2d = d \) or \( 21 = 3d \), giving \( d = 7 \). Now substituting \( d = 7 \): \( x = 6 + 7 = 13 \) and \( y = 6 + 2(7) = 20 \). Next, for the geometric progression sequence \( x, y, 27 \): Here, the ratios between consecutive terms are equal: \(\frac{y}{x} = \frac{27}{y}\). Substituting \( x = 13 \) and \( y = 20 \) gives: \(\frac{20}{13} = \frac{27}{20}\) which is indeed true. Now, we state the sequences: Arithmetic: \( 6, 13, 20, 27 \) with a common difference of \( 7 \). Geometric: \( 13, 20, 27 \) with a common ratio \( \frac{20}{13} \) or approximately \( 1.538 \).