Pregunta
upstudy study bank question image url

If the perimeter of a square is 8 cm , what is the length of the diagonal? (1 point) ( \( \frac{\sqrt{2}}{2} \mathrm{~cm} \) \( 2 \sqrt{2} \mathrm{~cm} \) 4 cm \( 4 \sqrt{2} \mathrm{~cm} \) Check answer Remaining Attempts : 3

Ask by Gibbs Haynes. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The diagonal is \( 2 \sqrt{2} \mathrm{~cm} \).

Solución

The perimeter of the square is 8 cm, so each side \( s \) is: \[ s = \frac{8 \text{ cm}}{4} = 2 \text{ cm} \] The diagonal \( d \) of a square is given by: \[ d = s \sqrt{2} = 2 \sqrt{2} \text{ cm} \] **Answer:** \( 2 \sqrt{2} \mathrm{~cm} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the length of the diagonal of a square, you first need to determine the side length. Given the perimeter is 8 cm, you can divide that by 4 (since a square has 4 equal sides) to find that each side is 2 cm long. Now, use the diagonal formula \(d = s\sqrt{2}\). Plugging in our side length, \(d = 2\sqrt{2}\) cm. So, the correct answer is \(2\sqrt{2} \mathrm{~cm}\). Did you know that the relationship between the side length and the diagonal is a classic problem from geometry? It stems from the Pythagorean theorem, where the diagonal essentially serves as the hypotenuse of a right triangle formed by two sides of the square. This fundamental concept has been around for centuries, showing just how interconnected mathematics is with our understanding of shapes and spaces! For practical applications, understanding the diagonal of a square is vital in fields like architecture and design. When creating blueprints, architects rely on these calculations to ensure that spaces are proportionate and structurally sound. Knowing how to swiftly calculate dimensions can save time and resources, making it an essential skill in various trades!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad