Pregunta
upstudy study bank question image url

Solving a Trigonometric Equation In Exercises 25-38, find all solutions of the equation in the interval \( \mathbf{0 , 2 \pi )} \). \( \begin{array}{ll}\text { 25. } \cos ^{3} x=\cos x & \text { 26. } \sec ^{2} x-1=0\end{array} \)

Ask by Carroll Fowler. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** - **Problem 25:** \( x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \) - **Problem 26:** \( x = 0, \pi \)

Solución

Sure, let's solve each trigonometric equation step-by-step within the interval \( [0, 2\pi) \). --- ### **Problem 25:** \[ \cos^3 x = \cos x \] **Step 1: Bring all terms to one side of the equation.** \[ \cos^3 x - \cos x = 0 \] **Step 2: Factor out the common term \(\cos x\).** \[ \cos x (\cos^2 x - 1) = 0 \] **Step 3: Use the Zero Product Property.** \[ \cos x = 0 \quad \text{or} \quad \cos^2 x - 1 = 0 \] **Step 4: Solve each equation separately.** 1. **When \(\cos x = 0\):** \[ x = \frac{\pi}{2}, \quad \frac{3\pi}{2} \] 2. **When \(\cos^2 x - 1 = 0\):** \[ \cos^2 x = 1 \implies \cos x = \pm 1 \] - **\(\cos x = 1\):** \[ x = 0 \] - **\(\cos x = -1\):** \[ x = \pi \] **Step 5: Combine all solutions within \( [0, 2\pi) \).** \[ x = 0, \quad \frac{\pi}{2}, \quad \pi, \quad \frac{3\pi}{2} \] --- ### **Problem 26:** \[ \sec^2 x - 1 = 0 \] **Step 1: Recall the identity involving secant and cosine.** \[ \sec x = \frac{1}{\cos x} \implies \sec^2 x = \frac{1}{\cos^2 x} \] **Step 2: Substitute and solve the equation.** \[ \sec^2 x - 1 = 0 \implies \frac{1}{\cos^2 x} - 1 = 0 \] \[ \frac{1 - \cos^2 x}{\cos^2 x} = 0 \] \[ 1 - \cos^2 x = 0 \implies \cos^2 x = 1 \implies \cos x = \pm 1 \] **Step 3: Find all angles \( x \) in \( [0, 2\pi) \) where \(\cos x = 1\) or \(\cos x = -1\).** 1. **\(\cos x = 1\):** \[ x = 0 \] 2. **\(\cos x = -1\):** \[ x = \pi \] **Step 4: Combine all solutions within \( [0, 2\pi) \).** \[ x = 0, \quad \pi \] --- ### **Summary of Solutions:** - **Problem 25:** \[ x = 0, \quad \frac{\pi}{2}, \quad \pi, \quad \frac{3\pi}{2} \] - **Problem 26:** \[ x = 0, \quad \pi \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve \( \cos^{3} x = \cos x \), we can factor it as \( \cos x (\cos^{2} x - 1) = 0 \). This gives us two cases: \( \cos x = 0 \) which leads to \( x = \frac{\pi}{2}, \frac{3\pi}{2} \), and \( \cos^{2} x - 1 = 0 \) leads to \( \cos x = 1 \) or \( \cos x = -1 \), which gives us \( x = 0, \pi \). Combining, the solutions in the interval \( [0, 2\pi) \) are \( x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2} \). For the equation \( \sec^{2} x - 1 = 0 \), we can rewrite it as \( \sec^{2} x = 1 \). Since \( \sec x = \frac{1}{\cos x} \), this implies \( \cos x = \pm 1 \). Therefore, the solutions are \( x = 0 \) (for \( \cos x = 1 \)) and \( x = \pi \) (for \( \cos x = -1 \)). Thus the solutions in the interval \( [0, 2\pi) \) are \( x = 0, \pi \).

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad