8. The circumference of a circle is \( 12 \pi \mathrm{~cm} \). Find the angle in a sector of this circle if the area of the sector is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve this problem, we first need to determine the radius of the circle from its circumference. The formula for the circumference is given by \( C = 2 \pi r \). Given that the circumference is \( 12 \pi \mathrm{~cm} \), we can set up the equation: \[ 12 \pi = 2 \pi r \] Dividing both sides by \( 2 \pi \), we find: \[ r = 6 \, \text{cm} \] Next, we calculate the area of the circle, which is given by the formula \( A = \pi r^2 \). Substituting in our radius: \[ A = \pi (6)^2 = 36 \pi \, \text{cm}^2 \] Now, if we denote the area of the sector as \( A_s \) and the angle of the sector in radians as \( \theta \), the relationship between the area of the sector and the angle is given by: \[ A_s = \frac{\theta}{2\pi} \cdot A \] Assuming you have the area of the sector, you can now solve for \( \theta \). By rearranging the formula, you will get: \[ \theta = \frac{A_s}{A} \cdot 2\pi \] Just plug in the area of your sector \( A_s \) to find the angle in radians!