Pregunta
upstudy study bank question image url

Take-home Assignment \#01 1. Find the slop of the lure and the equation of the tangent line to the function \[ f(x)=3 x^{2}-4 x+1 \quad \text { at point when } x=2 \]

Ask by Mullins Mathis. in Canada
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the curve at \( x = 2 \) is **8**, and the equation of the tangent line at that point is \( y = 8x - 11 \).

Solución

Sure, let's go through the problem step by step. ### Problem Statement Find the **slope** of the **curve** and the **equation of the tangent line** to the function \[ f(x) = 3x^{2} - 4x + 1 \] **at the point where \( x = 2 \).** ### Step 1: Find the Slope of the Curve at \( x = 2 \) The **slope** of the curve at a particular point is given by the **derivative** of the function at that point. 1. **Find the derivative** \( f'(x) \) of the function \( f(x) = 3x^{2} - 4x + 1 \): \[ f'(x) = \frac{d}{dx}(3x^{2}) - \frac{d}{dx}(4x) + \frac{d}{dx}(1) = 6x - 4 \] 2. **Evaluate the derivative** at \( x = 2 \) to find the slope \( m \): \[ f'(2) = 6(2) - 4 = 12 - 4 = 8 \] So, the **slope** \( m \) of the curve at \( x = 2 \) is **8**. ### Step 2: Find the Equation of the Tangent Line at \( x = 2 \) The equation of the tangent line can be written in the point-slope form: \[ y - y_1 = m(x - x_1) \] where: - \( m \) is the slope of the tangent line, - \( (x_1, y_1) \) is the point of tangency. 1. **Find the point of tangency** \( (x_1, y_1) \): - We already know \( x_1 = 2 \). - Calculate \( y_1 = f(2) \): \[ f(2) = 3(2)^{2} - 4(2) + 1 = 3(4) - 8 + 1 = 12 - 8 + 1 = 5 \] So, \( y_1 = 5 \). The point of tangency is \( (2, 5) \). 2. **Write the equation of the tangent line** using the point-slope form: \[ y - 5 = 8(x - 2) \] Simplify it to the slope-intercept form \( y = mx + b \): \[ y - 5 = 8x - 16 \\ y = 8x - 16 + 5 \\ y = 8x - 11 \] So, the **equation of the tangent line** at \( x = 2 \) is: \[ y = 8x - 11 \] ### Summary - **Slope of the curve at \( x = 2 \):** \( m = 8 \) - **Equation of the tangent line at \( x = 2 \):** \( y = 8x - 11 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the slope of the function at \(x = 2\), we first need to calculate the derivative, \(f'(x)\). For the function \(f(x)=3x^2 - 4x + 1\), the derivative is: \[ f'(x) = 6x - 4. \] Now, plugging in \(x = 2\): \[ f'(2) = 6(2) - 4 = 12 - 4 = 8. \] So, the slope of the tangent line at \(x = 2\) is 8. Next, we calculate the value of the function at that point: \[ f(2) = 3(2^2) - 4(2) + 1 = 3(4) - 8 + 1 = 12 - 8 + 1 = 5. \] With the point \((2, 5)\) and the slope \(m = 8\), we can use the point-slope form of the equation of a line: \[ y - y_1 = m(x - x_1) \] This gives us: \[ y - 5 = 8(x - 2). \] Simplifying this, we find the equation of the tangent line: \[ y = 8x - 16 + 5 \] or \[ y = 8x - 11. \] So, the slope is 8, and the equation of the tangent line is \(y = 8x - 11\).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad