Pregunta
upstudy study bank question image url

A bank offers a CD that pays a simple interest rate of \( 4.5 \% \). How much must you put in this CD now in order to have \( \$ 5000 \) for a graduation trip in 4 years? You must put \( \$ \square \) in this CD now in order to have \( \$ 5000 \) for a graduation trip in 4 years. (Round up to the nearest cent.)

Ask by Alexander Ortiz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to invest \$4,237.29 now to have \$5,000 in 4 years.

Solución

To determine how much you need to invest now in a Certificate of Deposit (CD) that offers a simple interest rate of \( 4.5\% \) to have \( \$5{,}000 \) in 4 years, you can use the formula for simple interest: \[ A = P(1 + rt) \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (in decimal). - \( t \) is the time the money is invested for, in years. Given: - \( A = 5000 \) - \( r = 4.5\% = 0.045 \) - \( t = 4 \) years Rearrange the formula to solve for \( P \): \[ P = \frac{A}{1 + rt} \] Plug in the values: \[ P = \frac{5000}{1 + (0.045 \times 4)} = \frac{5000}{1.18} \approx 4237.288135 \dots \] Rounding up to the nearest cent: \[ P \approx \$4{,}237.29 \] **You must put \$4,237.29 in this CD now in order to have \$5,000 for a graduation trip in 4 years.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much you need to invest now, we can use the formula for simple interest: \[ A = P(1 + rt) \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. We want \( A = 5000 \), \( r = 0.045 \), and \( t = 4 \) years. Plugging in these values, we get: \[ 5000 = P(1 + 0.045 \times 4) \] \[ 5000 = P(1 + 0.18) \] \[ 5000 = P(1.18) \] Now, solving for \( P \): \[ P = \frac{5000}{1.18} \approx 4237.29 \] You must put \( \$ 4237.29 \) in this CD now in order to have \( \$ 5000 \) for a graduation trip in 4 years.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad