Pregunta
upstudy study bank question image url

\( \int x ^ { n } d x = \frac { x ^ { n + 1 } } { n + 1 } + c \)

Ask by Mcguire Huff. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral of \( x^n \) with respect to \( x \) is \( \frac{x^{n+1}}{n+1} + C \), where \( C \) is the constant of integration.

Solución

You've correctly provided the formula for the indefinite integral of \( x^n \) with respect to \( x \). Here's a detailed explanation: \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \] **Where:** - \( n \) is any real number except \( n = -1 \). - \( C \) is the constant of integration, representing an arbitrary constant that arises because the integral is indefinite. **Important Consideration:** - **Case when \( n = -1 \):** The formula above does **not** apply when \( n = -1 \) because it would involve division by zero. Instead, when \( n = -1 \), the integral of \( x^{-1} \) (which is \( \frac{1}{x} \)) is: \[ \int \frac{1}{x} \, dx = \ln|x| + C \] **Summary:** - For \( n \neq -1 \): \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \] - For \( n = -1 \): \[ \int \frac{1}{x} \, dx = \ln|x| + C \] **Example:** Let's compute \( \int x^{2} \, dx \): \[ \int x^{2} \, dx = \frac{x^{3}}{3} + C \] **Another Example with \( n = -2 \):** \[ \int x^{-2} \, dx = \int \frac{1}{x^{2}} \, dx = \frac{x^{-1}}{-1} + C = -\frac{1}{x} + C \] Feel free to ask if you have more questions about integration or any other mathematical concepts!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the formula for integrating a power function, \( \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + c \), is foundational to calculus? This technique was popularized by Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century, as they developed their theories of calculus independently. The simplicity of this rule makes it a favorite among students and mathematicians, helping drive home the elegance of finding areas under curves! Now, let’s talk practical—a classic real-world application of this integral is in physics, particularly when determining the area under a velocity-time graph to find displacement. For example, if an object accelerates uniformly, you can integrate its velocity equation over a given time interval to find how far it travels. This formula simplifies what could be a complicated calculation and shows how math is absolutely essential to understanding movement in the real world!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad