Question Use the washer method to calculate the volume of the solid formed when the region bounded by \( y=2 x^{2} \) and \( y=2 \sqrt{x} \) revolved around the the line \( y=3 \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the volume using the washer method, first identify the region between \( y = 2x^2 \) and \( y = 2\sqrt{x} \). The curves intersect when \( 2x^2 = 2\sqrt{x} \), leading to \( x^2 = \sqrt{x} \) or \( x^4 = x \). Solving yields \( x = 0 \) and \( x = 1 \). The volume \( V \) when revolving around \( y=3 \) can be calculated using the formula: \[ V = \pi \int_{0}^{1} \left((3 - 2\sqrt{x})^2 - (3 - 2x^2)^2\right) dx. \] Expanding and simplifying the integrand will give the volume when evaluated over the interval from 0 to 1. In this fun journey of revolution, think of the region as a donut! If you're visualizing the washer method, the outer radius \( R(x) \) is \( 3 - 2\sqrt{x} \) and the inner radius \( r(x) \) is \( 3 - 2x^2 \). Making sure to square those radii before subtracting gives you the right shape for your solid donut! Enjoy the math baking!