Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 19 and standard deviation 2 . What is the probability that \( X \) is between 15 and 17 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Savage Klein. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 15 and 17 is **0.135**.

Solución

To determine the probability that \( X \) is between 15 and 17 using the \( 0.68-0.95-0.997 \) rule (also known as the empirical rule), follow these steps: 1. **Identify the Parameters:** - Mean (\( \mu \)) = 19 - Standard Deviation (\( \sigma \)) = 2 2. **Standardize the Values:** Convert the \( X \) values to \( Z \)-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 15 \): \[ Z = \frac{15 - 19}{2} = -2 \] - For \( X = 17 \): \[ Z = \frac{17 - 19}{2} = -1 \] 3. **Apply the Empirical Rule:** - **Within 1 Standard Deviation (\( Z = -1 \) to \( Z = 1 \)):** Approximately 68% of the data. - **Within 2 Standard Deviations (\( Z = -2 \) to \( Z = 2 \)):** Approximately 95% of the data. - **Within 3 Standard Deviations (\( Z = -3 \) to \( Z = 3 \)):** Approximately 99.7% of the data. However, we are interested in the probability between \( Z = -2 \) and \( Z = -1 \). 4. **Calculate the Probability:** - The probability from \( Z = -1 \) to \( Z = 1 \) is 68%, so each tail beyond this range is \( \frac{100\% - 68\%}{2} = 16\% \). - The probability beyond \( Z = -2 \) is half of the remaining 5% (since 95% is within \( \pm2\sigma \)), which is 2.5%. - Therefore, the probability between \( Z = -2 \) and \( Z = -1 \) is: \[ 16\% - 2.5\% = 13.5\% \] 5. **Express as a Decimal:** \[ 13.5\% = 0.135 \] **Final Answer:** The probability that \( X \) is between 15 and 17 is **0.135**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that \( X \) is between 15 and 17, we start by identifying how many standard deviations each value is from the mean. The mean \( \mu = 19 \) and the standard deviation \( \sigma = 2 \). First, calculate how many standard deviations 15 and 17 are from the mean: - For 15: \[ Z = \frac{15 - 19}{2} = \frac{-4}{2} = -2 \] - For 17: \[ Z = \frac{17 - 19}{2} = \frac{-2}{2} = -1 \] Now, using the \( 0.68-0.95-0.997 \) rule (which describes the percentages of data within certain standard deviations of the mean): - Approximately 68% of the data falls within 1 standard deviation (\( \mu \pm \sigma \)) from the mean, which is the interval from 17 to 21. - Approximately 95% falls within 2 standard deviations (\( \mu \pm 2\sigma \)), giving us the interval from 15 to 23. To find the probability that falls between 15 and 17: Since -2 to -1 standard deviations covers approximately \( (95\% / 2) = 47.5\% \) up to -1 and \( 50\% \) of the total distribution towards -2, we need to compute the probabilities: Thus, the probability that \( X \) is between 15 and 17 is: \[ P(15 < X < 17) \approx (50\% - 47.5\%) = 2.5\% \] Expressing 2.5% as a decimal gives us \( 0.025 \). Therefore, the probability that \( X \) is between 15 and 17 is approximately \( \textbf{0.025} \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad