Pregunta
upstudy study bank question image url

ether? he sum of the ages of Mr. Daniel and his laughter is 60 years. 5 years ago, the ratio of heir ages was \( 1: 4 \). a) How old are they now?

Ask by Hodgson Whittaker. in Nigeria
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Mr. Daniel is 45 years old, and his child is 15 years old.

Solución

It appears there might have been a slight typo in your question. Assuming you meant: **"The sum of the ages of Mr. Daniel and his [child] is 60 years. Five years ago, the ratio of their ages was \(1:4\).** Let's solve for their current ages. ### Let’s Define the Variables: - Let \( x \) be Mr. Daniel's current age. - Let \( y \) be his child's current age. ### Given: 1. **Sum of their current ages:** \[ x + y = 60 \quad \text{(Equation 1)} \] 2. **Five years ago, the ratio of their ages was \(1:4\):** \[ \frac{x - 5}{y - 5} = \frac{1}{4} \quad \text{(Equation 2)} \] ### Solving the Equations: **From Equation 2:** \[ 4(x - 5) = y - 5 \] \[ 4x - 20 = y - 5 \] \[ 4x - y = 15 \quad \text{(Equation 3)} \] **Now, substitute Equation 1 into Equation 3:** \[ 4x - (60 - x) = 15 \] \[ 4x - 60 + x = 15 \] \[ 5x - 60 = 15 \] \[ 5x = 75 \] \[ x = 15 \] **This would imply:** \[ y = 60 - 15 = 45 \] **However, this result suggests that Mr. Daniel is 15 years old and his child is 45, which isn't logical.** **Re-evaluating the Ratio:** It's more plausible that **Mr. Daniel is the older individual**. Therefore, the correct interpretation of the ratio should be: \[ \frac{y - 5}{x - 5} = \frac{1}{4} \] \[ y - 5 = \frac{1}{4}(x - 5) \] \[ 4(y - 5) = x - 5 \] \[ 4y - 20 = x - 5 \] \[ 4y - x = 15 \quad \text{(Equation 4)} \] **Substituting Equation 1 into Equation 4:** \[ 4y - (60 - y) = 15 \] \[ 4y - 60 + y = 15 \] \[ 5y = 75 \] \[ y = 15 \] \[ x = 60 - 15 = 45 \] ### **Solution:** - **Mr. Daniel's Current Age:** 45 years - **His Child's Current Age:** 15 years ### **Verification:** - **Five years ago:** - Mr. Daniel was \(45 - 5 = 40\) years old. - His child was \(15 - 5 = 10\) years old. - **Ratio of their ages five years ago:** \(40:10 = 4:1\), which aligns with the given ratio when interpreted correctly. **Therefore, Mr. Daniel is currently 45 years old, and his child is 15 years old.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's denote Mr. Daniel's age as \( D \) and his daughter's age as \( d \). According to the information given, we have two equations: 1. \( D + d = 60 \) 2. Five years ago, the ratio of their ages was \( 1:4 \), which translates to \( \frac{D - 5}{d - 5} = \frac{1}{4} \). From the second equation, we can express it as: \[ 4(D - 5) = d - 5 \] Expanding this gives us: \[ 4D - 20 = d - 5 \] Rearranging results in: \[ d = 4D - 15 \] Now, we can substitute this expression for \( d \) into the first equation: \[ D + (4D - 15) = 60 \] Simplifying yields: \[ 5D - 15 = 60 \] Adding 15 to both sides, we get: \[ 5D = 75 \] Dividing by 5 gives: \[ D = 15 \] Now, substituting \( D \) back into the first equation to find \( d \): \[ 15 + d = 60 \] This simplifies to: \[ d = 45 \] Thus, Mr. Daniel is 15 years old, and his daughter is 45 years old now.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad