product chosen is defective?
If X is a continuous random variable having the following probability density
function:
\[ f(x)=\left\{\begin{array}{ll}2(x-1), & 1
Ask by Ray Dickson. in Pakistan
Jan 22,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the variance of a continuous random variable \( X \) with the given probability density function (PDF), we first need to calculate the mean \( E[X] \) and then the expected value of \( X^2 \), \( E[X^2] \). 1. **Finding the Mean \( E[X] \)**: \[ E[X] = \int_{1}^{2} x \cdot f(x) \, dx = \int_{1}^{2} x \cdot 2(x - 1) \, dx = \int_{1}^{2} 2x^2 - 2x \, dx \] Evaluating the integral: \[ E[X] = \left[ \frac{2}{3}x^3 - x^2 \right]_{1}^{2} = \left( \frac{2}{3}(2^3) - (2^2) \right) - \left( \frac{2}{3}(1^3) - (1^2) \right) \] \[ = \left( \frac{16}{3} - 4 \right) - \left( \frac{2}{3} - 1 \right) = \left( \frac{16}{3} - \frac{12}{3} \right) - \left( \frac{2}{3} - \frac{3}{3} \right) = \left( \frac{4}{3} \right) - \left( -\frac{1}{3} \right) \] \[ = \frac{4}{3} + \frac{1}{3} = \frac{5}{3} \] 2. **Finding \( E[X^2] \)**: \[ E[X^2] = \int_{1}^{2} x^2 \cdot f(x) \, dx = \int_{1}^{2} x^2 \cdot 2(x - 1) \, dx = \int_{1}^{2} 2x^3 - 2x^2 \, dx \] Evaluating the integral: \[ E[X^2] = \left[ \frac{1}{2}x^4 - \frac{2}{3}x^3 \right]_{1}^{2} = \left( \frac{1}{2}(2^4) - \frac{2}{3}(2^3) \right) - \left( \frac{1}{2}(1^4) - \frac{2}{3}(1^3) \right) \] \[ = \left( \frac{16}{2} - \frac{16}{3} \right) - \left( \frac{1}{2} - \frac{2}{3} \right) = \left( 8 - \frac{16}{3} \right) - \left( \frac{3}{6} - \frac{4}{6} \right) = \left( \frac{24}{3} - \frac{16}{3} \right) + \frac{1}{6} \] \[ = \frac{8}{3} + \frac{1}{6} = \frac{16}{6} + \frac{1}{6} = \frac{17}{6} \] 3. **Calculating Variance \( Var(X) \)**: \[ Var(X) = E[X^2] - (E[X])^2 = \frac{17}{6} - \left( \frac{5}{3} \right)^2 = \frac{17}{6} - \frac{25}{9} \] Finding a common denominator (the least common multiple of 6 and 9 is 18): \[ = \frac{51}{18} - \frac{50}{18} = \frac{1}{18} \] Thus, the variance of \( X \) is \( \frac{1}{18} \).