Pregunta
upstudy study bank question image url

N.B. \( \mathrm{d}=\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{T}_{3}-\mathrm{T}_{2} \) General Term: \( \mathrm{T}_{\mathrm{n}}=\frac{a+(n-1) d}{} \) where \( d=T 2-T 1 \) Sum of n Terms: \( \mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(2 a+(n-1) d\right. \) or \( \frac{n}{2}(a+l) \) where \( l= \) last term 1. Given the arithmetic series: \( 2+5+8+\ldots+62 \) Calculate 1.1 The number of terms in the series 1.2 The sum of this series 2. The following is an arithmetic sequence: \( 1-\mathrm{p} ; 2 \mathrm{p}-3 ; \mathrm{p}+5 ; \ldots \) 2.1 Calculate the value of p 2.2 Write down the value of: 2.2.1 The first term of the sequence 2.2.2 The common difference 2.3 Explain why none of the numbers in this arithmetic sequence are perfect squar 3. Consider the arithmetic sequence: \( -8 ;-2 ; 4 ; 10 ; \ldots \) 3.1 Write down the next term of the sequence 3.2 If the nth term of the sequence is 148, determine the value of \( n \)

Ask by Lang Norris. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 1:** - **Number of Terms:** 21 - **Sum of Series:** 672 **Problem 2:** - **Value of \( p \):** 3 - **First Term:** -2 - **Common Difference:** 5 - **Explanation:** None of the numbers in the sequence are perfect squares because \( 5n - 7 \) does not result in a perfect square for any integer \( n \). **Problem 3:** - **Next Term:** 16 - **Value of \( n \) when \( T_n = 148 \):** 27

Solución

Sure, let's tackle each problem step by step. --- ## **Problem 1** **Given the arithmetic series:** \( 2 + 5 + 8 + \ldots + 62 \) ### **1.1. Calculate the number of terms in the series** **Given:** - First term (\( a \)) = 2 - Common difference (\( d \)) = \( 5 - 2 = 3 \) - Last term (\( l \)) = 62 **Formula for the \( n \)-th term of an Arithmetic Sequence:** \[ T_n = a + (n - 1) \cdot d \] **Plugging in the known values:** \[ 62 = 2 + (n - 1) \cdot 3 \] **Solving for \( n \):** \[ 62 - 2 = 3(n - 1) \\ 60 = 3(n - 1) \\ n - 1 = \frac{60}{3} \\ n - 1 = 20 \\ n = 21 \] **Answer:** There are **21 terms** in the series. ### **1.2. Calculate the sum of this series** **Formula for the sum of the first \( n \) terms of an Arithmetic Series:** \[ S_n = \frac{n}{2} \cdot (a + l) \] **Plugging in the known values:** \[ S_{21} = \frac{21}{2} \cdot (2 + 62) = \frac{21}{2} \cdot 64 = 21 \cdot 32 = 672 \] **Answer:** The sum of the series is **672**. --- ## **Problem 2** **Given the arithmetic sequence:** \( 1 - p ;\ 2p - 3 ;\ p + 5 ; \ldots \) ### **2.1. Calculate the value of \( p \)** **Understanding the sequence:** - First term (\( T_1 \)) = \( 1 - p \) - Second term (\( T_2 \)) = \( 2p - 3 \) - Third term (\( T_3 \)) = \( p + 5 \) **Common difference (\( d \)) should be constant:** \[ d = T_2 - T_1 = (2p - 3) - (1 - p) = 3p - 4 \] \[ d = T_3 - T_2 = (p + 5) - (2p - 3) = -p + 8 \] **Setting the two expressions for \( d \) equal:** \[ 3p - 4 = -p + 8 \] \[ 3p + p = 8 + 4 \\ 4p = 12 \\ p = 3 \] **Answer:** \( p = 3 \) ### **2.2. Write down the value of:** **With \( p = 3 \), let's find the specific values.** #### **2.2.1. The first term of the sequence** \[ T_1 = 1 - p = 1 - 3 = -2 \] **Answer:** The first term is **-2**. #### **2.2.2. The common difference** \[ d = 3p - 4 = 3 \cdot 3 - 4 = 9 - 4 = 5 \] **Answer:** The common difference is **5**. ### **2.3. Explain why none of the numbers in this arithmetic sequence are perfect squares** **Sequence with \( p = 3 \):** \( T_n = -2, 3, 8, 13, 18, \ldots \) **General term:** \[ T_n = a + (n - 1)d = -2 + 5(n - 1) = 5n - 7 \] **Assume \( T_n \) is a perfect square:** \[ 5n - 7 = k^2 \quad \text{for some integer } k \] **Rearrange:** \[ 5n = k^2 + 7 \\ k^2 \equiv -7 \pmod{5} \\ k^2 \equiv 3 \pmod{5} \] **Checking quadratic residues modulo 5:** - \( 0^2 \equiv 0 \) - \( 1^2 \equiv 1 \) - \( 2^2 \equiv 4 \) - \( 3^2 \equiv 4 \) - \( 4^2 \equiv 1 \) **Possible residues:** 0, 1, 4 **Since 3 is not a quadratic residue modulo 5, there exists no integer \( k \) such that \( k^2 \equiv 3 \pmod{5} \).** **Conclusion:** There are **no perfect squares** in the sequence. --- ## **Problem 3** **Given the arithmetic sequence:** \( -8 ; -2 ; 4 ; 10 ; \ldots \) ### **3.1. Write down the next term of the sequence** **Identify the common difference (\( d \)):** \[ d = T_2 - T_1 = -2 - (-8) = 6 \\ d = T_3 - T_2 = 4 - (-2) = 6 \\ d = T_4 - T_3 = 10 - 4 = 6 \] **Next term (\( T_5 \)):** \[ T_5 = T_4 + d = 10 + 6 = 16 \] **Answer:** The next term is **16**. ### **3.2. If the \( n \)-th term of the sequence is 148, determine the value of \( n \)** **Given:** \[ T_n = 148 \] **Formula for the \( n \)-th term:** \[ T_n = a + (n - 1)d \] **Plugging in the known values:** \[ 148 = -8 + (n - 1) \cdot 6 \] \[ 148 + 8 = 6(n - 1) \\ 156 = 6(n - 1) \\ n - 1 = \frac{156}{6} = 26 \\ n = 27 \] **Answer:** \( n = 27 \) ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the number of terms in the series \( 2 + 5 + 8 + \ldots + 62 \), we first identify \( a = 2 \) and \( d = 5 - 2 = 3 \). The formula for the \( n \)-th term gives \( T_n = a + (n-1)d \). Setting \( T_n = 62 \), we solve \( 62 = 2 + (n-1) \cdot 3 \). Rearranging leads to \( 60 = (n-1) \cdot 3 \), thus \( n - 1 = 20 \) or \( n = 21 \). For the sum of this series, we can use \( S_n = \frac{n}{2} \left( 2a + (n-1)d \right) = \frac{21}{2} \left( 2 \cdot 2 + (21-1) \cdot 3 \right) = \frac{21}{2} (4 + 60) = \frac{21 \cdot 64}{2} = 672 \). For the arithmetic sequence specified by \( 1-p, 2p-3, p+5 \), we know that the terms must have a common difference. To find \( p \), we calculate the difference between the first two terms and the second and third terms. Thus, we set \( (2p-3) - (1-p) = (p+5) - (2p-3) \), leading to the equation \( 3p - 2 = 3 \) which simplifies to \( p = \frac{5}{3} \). Now evaluating the sequence, the first term \( 1 - \frac{5}{3} = -\frac{2}{3} \) and common difference \( (2 \cdot \frac{5}{3} - 3) - (-\frac{2}{3}) = \frac{10}{3} - 3 + \frac{2}{3} = \frac{10}{3} - \frac{9}{3} = \frac{1}{3} \). Interestingly, none of these terms are perfect squares because the sequence is defined by irrational numbers and coefficients that will never yield a perfect square, primarily due to the negative first term and incremental values being too spread out on the number line. Lastly, for the sequence \( -8, -2, 4, 10, \ldots \), the next term can be found by adding the common difference, which is \( 6 \), therefore the next term is \( 10 + 6 = 16 \). For the \( n \)-th term to equal \( 148 \), we solve \( 148 = -8 + (n-1) \cdot 6 \), leading to \( 156 = (n-1) \cdot 6 \), so \( n - 1 = 26 \) and thus \( n = 27 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad