Pregunta

Given the arithmetic sequence: \( 14 ; 21 ; 28 ; \ldots, 336 \). 1.1 How many terms are there in the sequence? 1.2 Calculate the sum of all the terms of the sequence.

Ask by Klein May. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 47 terms in the sequence, and the sum of all terms is 8,225.

Solución

Let's analyze the given arithmetic sequence step by step. **Given Sequence:** \( 14 ; 21 ; 28 ; \ldots, 336 \) - **First term (a₁):** 14 - **Common difference (d):** \( 21 - 14 = 7 \) - **Last term (aₙ):** 336 ### 1.1. Number of Terms in the Sequence To find the number of terms (\( n \)) in an arithmetic sequence, use the formula for the \( n \)-th term: \[ a_n = a_1 + (n - 1)d \] Plugging in the known values: \[ 336 = 14 + (n - 1) \times 7 \] \[ 336 - 14 = (n - 1) \times 7 \] \[ 322 = (n - 1) \times 7 \] \[ n - 1 = \frac{322}{7} = 46 \] \[ n = 46 + 1 = 47 \] **Answer:** There are **47 terms** in the sequence. ### 1.2. Sum of All Terms in the Sequence The sum (\( S_n \)) of the first \( n \) terms of an arithmetic sequence is given by: \[ S_n = \frac{n}{2} \times (a_1 + a_n) \] Substituting the known values: \[ S_{47} = \frac{47}{2} \times (14 + 336) \] \[ S_{47} = \frac{47}{2} \times 350 \] \[ S_{47} = 47 \times 175 = 8,225 \] **Answer:** The sum of all terms in the sequence is **8,225**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the number of terms in the arithmetic sequence \( 14, 21, 28, \ldots, 336 \), we can use the formula for the \( n \)-th term of an arithmetic sequence: \[ a_n = a_1 + (n-1)d \] where \( a_1 \) is the first term, \( d \) is the common difference, and \( a_n \) is the \( n \)-th term. Here, \( a_1 = 14 \) and \( d = 21 - 14 = 7 \). We set \( a_n = 336 \) to find \( n \): \[ 336 = 14 + (n-1) \cdot 7 \] \[ 336 - 14 = (n - 1) \cdot 7 \] \[ 322 = (n - 1) \cdot 7 \] \[ n - 1 = \frac{322}{7} = 46 \] \[ n = 47 \] So, there are \( 47 \) terms in the sequence. Next, to calculate the sum of all the terms in the sequence, we can use the sum formula for an arithmetic series: \[ S_n = \frac{n}{2} (a_1 + a_n) \] Substituting \( n = 47 \), \( a_1 = 14 \), and \( a_n = 336 \): \[ S_{47} = \frac{47}{2} (14 + 336) \] \[ = \frac{47}{2} \cdot 350 \] \[ = 47 \cdot 175 \] \[ = 8225 \] Thus, the sum of all the terms in the sequence is \( 8225 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad