Pregunta
upstudy study bank question image url

The function \( h \) is defined as \( h(x)=5 x^{2}-3 \)

Ask by Boone Clark. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( h(x) = 5x^2 - 3 \) is a quadratic function that opens upwards with its vertex at \( (0, -3) \) and y-intercept at \( -3 \).

Solución

Let's analyze the function \( h(x) = 5x^2 - 3 \). 1. **Identify the type of function**: This is a quadratic function because it can be expressed in the standard form \( ax^2 + bx + c \), where \( a = 5 \), \( b = 0 \), and \( c = -3 \). 2. **Determine the features of the function**: - **Vertex**: The vertex of a quadratic function in the form \( ax^2 + bx + c \) can be found using the formula \( x = -\frac{b}{2a} \). - **Axis of symmetry**: The axis of symmetry is the vertical line that passes through the vertex, given by \( x = -\frac{b}{2a} \). - **Direction of opening**: Since \( a > 0 \), the parabola opens upwards. - **Y-intercept**: The y-intercept occurs when \( x = 0 \), which can be found by evaluating \( h(0) \). Let's calculate the vertex, axis of symmetry, and y-intercept. ### Step 1: Calculate the vertex Using the formula for the x-coordinate of the vertex: \[ x = -\frac{b}{2a} = -\frac{0}{2 \cdot 5} = 0 \] Now, substitute \( x = 0 \) back into the function to find the y-coordinate of the vertex: \[ h(0) = 5(0)^2 - 3 = -3 \] Thus, the vertex is at the point \( (0, -3) \). ### Step 2: Axis of symmetry The axis of symmetry is given by the line: \[ x = 0 \] ### Step 3: Y-intercept The y-intercept is: \[ h(0) = -3 \] ### Summary of features: - **Vertex**: \( (0, -3) \) - **Axis of symmetry**: \( x = 0 \) - **Direction of opening**: Upwards - **Y-intercept**: \( -3 \) If you need further analysis or specific calculations related to this function, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that quadratic functions like \( h(x) = 5x^2 - 3 \) have a parabolic shape, which is quite fascinating? This particular function opens upwards because the coefficient of \( x^2 \) is positive. The vertex of the parabola represents the minimum point, which in this case occurs at \( (0, -3) \). This means, regardless of how large or small the values of \( x \) become, \( h(x) \) can never go below -3! Now, if you're looking to apply this function in real-world contexts, think about any scenario involving acceleration, like the height of a projectile over time. The \( h(x) \) can represent the height of an object thrown upwards from a point -like a cannonball! Just plug in the time values (as \( x \)) and see how high your cannonball will go! Remember, the actual situation might require additional factors, like air resistance, but the fundamental principles hold true!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad