Responder
Here are the simplified evaluations of each expression:
1. \( 11 \sqrt[4]{10000} = 110 \)
2. \( 1.2 \sqrt[3]{64^{2}} = 19.2 \)
3. \( 13 \sqrt[4]{16^{3}} = 104 \)
4. \( 1.4(0.125)^{-\frac{2}{3}} = 5.6 \)
5. \( 1.5\left(2 \frac{14}{25}\right)^{-\frac{1}{2}} = \frac{15}{16} \)
6. \( 1.6\left(1 \frac{11}{25}\right)^{-\frac{1}{2}} = 2\frac{2}{3} \)
7. \( (-2)^{0}+\sqrt[3]{8}+\left(\sqrt{3}\right)^{2} = 6 \)
8. \( (0.0625)^{-\frac{1}{4}} = 2 \)
9. \( 7.9(0.064)^{\frac{2}{3}} = 1.975 \)
10. \( 81^{-\frac{3}{4}}\left(27^{\frac{2}{3}}-9^{\frac{3}{2}}\right) = -\frac{2}{3} \)
11. \( 49^{-\frac{1}{2}}\left(125^{\frac{2}{3}}-9^{0}\right) = \) (Calculation not completed)
Solución
Calculate the value by following steps:
- step0: Calculate:
\(11\times 10000^{\frac{1}{4}}\)
- step1: Evaluate the power:
\(11\times 10\)
- step2: Multiply:
\(110\)
Calculate or simplify the expression \( (-2)^0 + (8)^(1/3) + (3)^(2) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(-2\right)^{0}+8^{\frac{1}{3}}+3^{2}\)
- step1: Evaluate the power:
\(1+8^{\frac{1}{3}}+3^{2}\)
- step2: Evaluate the power:
\(1+2+3^{2}\)
- step3: Evaluate the power:
\(1+2+9\)
- step4: Add the numbers:
\(12\)
Calculate or simplify the expression \( 13 * (16^3)^(1/4) \).
Calculate the value by following steps:
- step0: Calculate:
\(13\left(16^{3}\right)^{\frac{1}{4}}\)
- step1: Multiply the exponents:
\(13\times 16^{3\times \frac{1}{4}}\)
- step2: Multiply:
\(13\times 16^{\frac{3}{4}}\)
- step3: Evaluate the power:
\(13\times 8\)
- step4: Multiply:
\(104\)
Calculate or simplify the expression \( (0.0625)^(-1/4) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.0625^{\frac{-1}{4}}\)
- step1: Rewrite the fraction:
\(0.0625^{-\frac{1}{4}}\)
- step2: Convert the expressions:
\(\left(\frac{1}{16}\right)^{-\frac{1}{4}}\)
- step3: Transform the expression:
\(16^{\frac{1}{4}}\)
- step4: Factor the number:
\(\left(2^{4}\right)^{\frac{1}{4}}\)
- step5: Evaluate the power:
\(2\)
Calculate or simplify the expression \( 1.2 * (64^2)^(1/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.2\left(64^{2}\right)^{\frac{1}{3}}\)
- step1: Multiply the exponents:
\(1.2\times 64^{2\times \frac{1}{3}}\)
- step2: Multiply:
\(1.2\times 64^{\frac{2}{3}}\)
- step3: Rewrite the expression:
\(1.2\times 16\)
- step4: Multiply the numbers:
\(19.2\)
Calculate or simplify the expression \( 7.9 * (0.064)^(2/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(7.9\times 0.064^{\frac{2}{3}}\)
- step1: Convert the expressions:
\(7.9\left(\frac{8}{125}\right)^{\frac{2}{3}}\)
- step2: Convert the expressions:
\(\frac{79}{10}\left(\frac{8}{125}\right)^{\frac{2}{3}}\)
- step3: Multiply the numbers:
\(\frac{158}{125}\)
Calculate or simplify the expression \( 1.4 * (0.125)^(-2/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.4\times 0.125^{\frac{-2}{3}}\)
- step1: Rewrite the fraction:
\(1.4\times 0.125^{-\frac{2}{3}}\)
- step2: Convert the expressions:
\(1.4\left(\frac{1}{8}\right)^{-\frac{2}{3}}\)
- step3: Rewrite the expression:
\(1.4\times 4\)
- step4: Multiply the numbers:
\(5.6\)
Calculate or simplify the expression \( 81^(-3/4) * (27^(2/3) - 9^(3/2)) \).
Calculate the value by following steps:
- step0: Calculate:
\(81^{\frac{-3}{4}}\left(27^{\frac{2}{3}}-9^{\frac{3}{2}}\right)\)
- step1: Subtract the numbers:
\(81^{\frac{-3}{4}}\left(-18\right)\)
- step2: Rewrite the fraction:
\(81^{-\frac{3}{4}}\left(-18\right)\)
- step3: Evaluate the power:
\(\frac{1}{27}\left(-18\right)\)
- step4: Multiply:
\(-\frac{2}{3}\)
Calculate or simplify the expression \( 49^(-1/2) * (125^(2/3) - 9^0) \).
Calculate the value by following steps:
- step0: Calculate:
\(49^{\frac{-1}{2}}\left(125^{\frac{2}{3}}-9^{0}\right)\)
- step1: Evaluate the power:
\(49^{\frac{-1}{2}}\left(125^{\frac{2}{3}}-1\right)\)
- step2: Subtract the numbers:
\(49^{\frac{-1}{2}}\times 24\)
- step3: Rewrite the fraction:
\(49^{-\frac{1}{2}}\times 24\)
- step4: Evaluate the power:
\(\frac{1}{7}\times 24\)
- step5: Multiply:
\(\frac{24}{7}\)
Calculate or simplify the expression \( 1.6 * (1 + 11/25)^(-1/2) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.6\left(1+\frac{11}{25}\right)^{\frac{-1}{2}}\)
- step1: Add the numbers:
\(1.6\left(\frac{36}{25}\right)^{\frac{-1}{2}}\)
- step2: Rewrite the fraction:
\(1.6\left(\frac{36}{25}\right)^{-\frac{1}{2}}\)
- step3: Convert the expressions:
\(\frac{8}{5}\left(\frac{36}{25}\right)^{-\frac{1}{2}}\)
- step4: Multiply the numbers:
\(\frac{4}{3}\)
Calculate or simplify the expression \( 16^(1/2) + 16^(3/4) - 64^(-1/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(16^{\frac{1}{2}}+16^{\frac{3}{4}}-64^{\frac{-1}{3}}\)
- step1: Rewrite the fraction:
\(16^{\frac{1}{2}}+16^{\frac{3}{4}}-64^{-\frac{1}{3}}\)
- step2: Evaluate the power:
\(4+16^{\frac{3}{4}}-64^{-\frac{1}{3}}\)
- step3: Evaluate the power:
\(4+8-64^{-\frac{1}{3}}\)
- step4: Evaluate the power:
\(4+8-\frac{1}{4}\)
- step5: Add the numbers:
\(12-\frac{1}{4}\)
- step6: Reduce fractions to a common denominator:
\(\frac{12\times 4}{4}-\frac{1}{4}\)
- step7: Transform the expression:
\(\frac{12\times 4-1}{4}\)
- step8: Multiply the numbers:
\(\frac{48-1}{4}\)
- step9: Subtract the numbers:
\(\frac{47}{4}\)
Calculate or simplify the expression \( 1.5 * (2 + 14/25)^(-1/2) \).
Calculate the value by following steps:
- step0: Calculate:
\(1.5\left(2+\frac{14}{25}\right)^{\frac{-1}{2}}\)
- step1: Add the numbers:
\(1.5\left(\frac{64}{25}\right)^{\frac{-1}{2}}\)
- step2: Rewrite the fraction:
\(1.5\left(\frac{64}{25}\right)^{-\frac{1}{2}}\)
- step3: Convert the expressions:
\(\frac{3}{2}\left(\frac{64}{25}\right)^{-\frac{1}{2}}\)
- step4: Multiply the numbers:
\(\frac{15}{16}\)
Let's evaluate each expression step by step:
1. **Evaluate \( 11 \sqrt[4]{10000} \)**:
- First, calculate \( \sqrt[4]{10000} \):
\[
\sqrt[4]{10000} = (10000)^{1/4} = (10^4)^{1/4} = 10
\]
- Now, multiply by 11:
\[
11 \times 10 = 110
\]
2. **Evaluate \( 1.2 \sqrt[3]{64^{2}} \)**:
- Calculate \( \sqrt[3]{64^2} \):
\[
\sqrt[3]{64^2} = (64)^{2/3} = (4^3)^{2/3} = 4^2 = 16
\]
- Now, multiply by 1.2:
\[
1.2 \times 16 = 19.2
\]
3. **Evaluate \( 13 \sqrt[4]{16^{3}} \)**:
- Calculate \( \sqrt[4]{16^3} \):
\[
\sqrt[4]{16^3} = (16)^{3/4} = (4^2)^{3/4} = 4^{3/2} = 8
\]
- Now, multiply by 13:
\[
13 \times 8 = 104
\]
4. **Evaluate \( 1.4(0.125)^{-\frac{2}{3}} \)**:
- Calculate \( (0.125)^{-\frac{2}{3}} \):
\[
(0.125)^{-\frac{2}{3}} = (1/8)^{-\frac{2}{3}} = 8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^2 = 4
\]
- Now, multiply by 1.4:
\[
1.4 \times 4 = 5.6
\]
5. **Evaluate \( 1.5\left(2 \frac{14}{25}\right)^{-\frac{1}{2}} \)**:
- Convert \( 2 \frac{14}{25} \) to an improper fraction:
\[
2 \frac{14}{25} = \frac{50 + 14}{25} = \frac{64}{25}
\]
- Calculate \( \left(\frac{64}{25}\right)^{-\frac{1}{2}} \):
\[
\left(\frac{64}{25}\right)^{-\frac{1}{2}} = \frac{25^{1/2}}{64^{1/2}} = \frac{5}{8}
\]
- Now, multiply by 1.5:
\[
1.5 \times \frac{5}{8} = \frac{7.5}{8} = \frac{15}{16}
\]
6. **Evaluate \( 1.6\left(1 \frac{11}{25}\right)^{-\frac{1}{2}} \)**:
- Convert \( 1 \frac{11}{25} \) to an improper fraction:
\[
1 \frac{11}{25} = \frac{25 + 11}{25} = \frac{36}{25}
\]
- Calculate \( \left(\frac{36}{25}\right)^{-\frac{1}{2}} \):
\[
\left(\frac{36}{25}\right)^{-\frac{1}{2}} = \frac{25^{1/2}}{36^{1/2}} = \frac{5}{6}
\]
- Now, multiply by 1.6:
\[
1.6 \times \frac{5}{6} = \frac{8}{3} = 2\frac{2}{3}
\]
7. **Evaluate \( (-2)^{0}+\sqrt[3]{8}+\left(\sqrt{3}\right)^{2} \)**:
- Calculate each term:
\[
(-2)^{0} = 1, \quad \sqrt[3]{8} = 2, \quad \left(\sqrt{3}\right)^{2} = 3
\]
- Now, sum them:
\[
1 + 2 + 3 = 6
\]
8. **Evaluate \( (0.0625)^{-\frac{1}{4}} \)**:
- Calculate \( (0.0625)^{-\frac{1}{4}} \):
\[
(0.0625)^{-\frac{1}{4}} = (1/16)^{-\frac{1}{4}} = 16^{\frac{1}{4}} = 2
\]
9. **Evaluate \( 7.9(0.064)^{\frac{2}{3}} \)**:
- Calculate \( (0.064)^{\frac{2}{3}} \):
\[
(0.064)^{\frac{2}{3}} = (1/16)^{\frac{2}{3}} = 16^{-\frac{2}{3}} = \frac{1}{4}
\]
- Now, multiply by 7.9:
\[
7.9 \times \frac{1}{4} = 1.975
\]
10. **Evaluate \( 81^{-\frac{3}{4}}\left(27^{\frac{2}{3}}-9^{\frac{3}{2}}\right) \)**:
- Calculate each part:
\[
81^{-\frac{3}{4}} = (3^4)^{-\frac{3}{4}} = 3^{-3} = \frac{1}{27}
\]
\[
27^{\frac{2}{3}} = (3^3)^{\frac{2}{3}} = 3^2 = 9
\]
\[
9^{\frac{3}{2}} = (3^2)^{\frac{3}{2}} = 3^3 = 27
\]
- Now, calculate the expression:
\[
9 - 27 = -18
\]
\[
\frac{1}{27} \times (-18) = -\frac{2}{3}
\]
11. **Evaluate \( 49^{-\frac{1}{2}}\left(125^{\frac{2}{3}}-9^{0}\right) \)**:
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución