Pregunta
upstudy study bank question image url

191 Mark for Review A quadratic function models the height, in feet, of an object abowe the ground in terms of the time, in seconds, after the object was launched. Aocording to the modes the object was launched from a height of 0 feet and reached its maximum heighs of 1,600 feet 10 seconds after it was launched. Baved on the model, what was the height, in feet, of the object 7 seconds after it was launched? \( (10,1600) \)

Ask by Klein Sanders. in Saudi Arabia
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 7 seconds, the object was at a height of 1,456 feet.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To solve for the height of the object 7 seconds after launch, we can use the vertex form of a quadratic function. Given the vertex at (10, 1600), the equation of the parabola can be expressed as: \[ h(t) = -a(t - 10)^2 + 1600 \] Since we know the height is 0 at time 0, we can find the 'a' value through additional points or adjustments. By plugging in \( t = 7 \) into the quadratic once we appropriately determine 'a', we find out how high the object was at this time. It’s essential to understand that the height will be decreasing as time approaches the vertex from the left side. One potential common mistake during such calculations is forgetting to apply the negative sign for the quadratic term after achieving the vertex. Always keep track of your signs! To gather more insight, you could check out resources that explore the physics of projectile motion, which may include additional scenarios involving real-world applications of quadratic equations in sports, engineering, and even safety analysis for roller coasters and other thrilling rides.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad