Establish the identity. \[ (\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1 \] Multiply and write the left side expression as the difference of two squares.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To establish the identity \((\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1\), we can start by recognizing that the left-hand side is a difference of squares. We rewrite it as: \[ (\sec \theta)^2 - (\tan \theta)^2 \] Using the Pythagorean identities, we know that: \[ \sec^2 \theta = 1 + \tan^2 \theta \] Thus, we can substitute this into our equation: \[ (\sec \theta)^2 - (\tan \theta)^2 = (1 + \tan^2 \theta) - (\tan^2 \theta) = 1 \] This confirms the left side simplifies to 1, establishing the identity. Therefore, the equation holds true: \[ (\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1 \]