(a) \( \frac{\left(16 x^{2 / 3} y^{-2}\right)^{-3 / 2}}{2 x^{-2} y} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's break down the expression step-by-step! First, simplify the numerator: \[ \left(16 x^{2/3} y^{-2}\right)^{-3/2} = 16^{-3/2} \left(x^{2/3}\right)^{-3/2} \left(y^{-2}\right)^{-3/2} \] Calculating the individual parts, we find: \[ 16^{-3/2} = \frac{1}{(16^{1/2})^3} = \frac{1}{(4)^3} = \frac{1}{64} \] For \( x^{2/3} \) raised to \(-3/2\): \[ \left(x^{2/3}\right)^{-3/2} = x^{(-2/3) \cdot (3/2)} = x^{-1} = \frac{1}{x} \] And for \( y^{-2} \) raised to \(-3/2\): \[ \left(y^{-2}\right)^{-3/2} = y^{(-2) \cdot (-3/2)} = y^{3} \] Putting this all together gives us: \[ \left(16 x^{2/3} y^{-2}\right)^{-3/2} = \frac{y^3}{64x} \] Now, tackle the denominator: \[ 2 x^{-2} y = 2 \cdot \frac{1}{x^{2}} \cdot y = \frac{2y}{x^{2}} \] Now combine the two parts: \[ \frac{\frac{y^3}{64x}}{\frac{2y}{x^{2}}} = \frac{y^3}{64x} \cdot \frac{x^{2}}{2y} = \frac{y^3 \cdot x^{2}}{128xy} \] Simplifying this overall expression: \[ = \frac{y^{3-1} \cdot x^{2-1}}{128} = \frac{xy^2}{128} \] So, the final simplified form of the expression is: \[ \boxed{\frac{xy^2}{128}} \]