Pregunta
upstudy study bank question image url

(a) Graph \( f(x)=2^{x}-4 \). (b) Find the zero of \( f(x) \). (c) Based on the graph, solve \( f(x)<0 \).

Ask by Beck Moran. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a) The graph of \( f(x) = 2^{x} - 4 \) is an exponential curve shifted downward by 4 units, passing through the point \( (2, 0) \). **(b) The zero of \( f(x) \) is at \( x = 2 \). **(c) \( f(x) < 0 \) for all real numbers \( x \) where \( x < 2 \).

Solución

Sure, let's tackle each part of the problem step by step. --- ### **(a) Graph of \( f(x) = 2^{x} - 4 \)** To graph the function \( f(x) = 2^{x} - 4 \), we'll analyze its key features: 1. **Base Function**: The base exponential function is \( 2^{x} \), which has the following characteristics: - **Y-intercept**: \( (0, 1) \) because \( 2^{0} = 1 \). - **Horizontal Asymptote**: \( y = 0 \) as \( x \to -\infty \). - **Growth**: Increases rapidly as \( x \) increases. 2. **Transformation**: The function \( 2^{x} - 4 \) shifts the base function **downward** by 4 units. - **New Y-intercept**: \( (0, 1 - 4) = (0, -3) \). - **Horizontal Asymptote**: \( y = -4 \). 3. **Plotting Points**: | \( x \) | \( 2^{x} \) | \( f(x) = 2^{x} - 4 \) | |---------|------------|------------------------| | -2 | 0.25 | -3.75 | | -1 | 0.5 | -3.5 | | 0 | 1 | -3 | | 1 | 2 | -2 | | 2 | 4 | 0 | | 3 | 8 | 4 | | 4 | 16 | 12 | 4. **Graph Description**: - Starts near the horizontal asymptote \( y = -4 \) for large negative \( x \) values. - Passes through the y-intercept at \( (0, -3) \). - Crosses the x-axis at \( x = 2 \) (zero of the function). - Increases rapidly as \( x \) becomes positive. *Since this is a text-based medium, please sketch the graph using the points above, ensuring the exponential growth and downward shift are represented.* --- ### **(b) Finding the Zero of \( f(x) \)** To find the zero of the function \( f(x) = 2^{x} - 4 \), set \( f(x) \) equal to zero and solve for \( x \): \[ 2^{x} - 4 = 0 \\ 2^{x} = 4 \] Since \( 4 \) is a power of \( 2 \), we can write: \[ 2^{x} = 2^{2} \\ x = 2 \] **Zero of \( f(x) \):** \( x = 2 \) *This means the graph of \( f(x) = 2^{x} - 4 \) crosses the x-axis at the point \( (2, 0) \).* --- ### **(c) Solving \( f(x) < 0 \) Based on the Graph** We need to determine the values of \( x \) for which \( f(x) = 2^{x} - 4 \) is less than zero: \[ 2^{x} - 4 < 0 \\ 2^{x} < 4 \] Again, recognizing that \( 4 = 2^{2} \): \[ 2^{x} < 2^{2} \] Since the base \( 2 \) is greater than 1, the inequality holds when the exponent is less than 2: \[ x < 2 \] **Solution:** All real numbers \( x \) such that \( x < 2 \). *Graphically, this corresponds to the portion of the graph below the x-axis, which occurs to the left of the vertical line \( x = 2 \).* --- ### **Summary** - **(a)** The graph of \( f(x) = 2^{x} - 4 \) is an exponential curve shifted downward by 4 units, with a y-intercept at \( (0, -3) \), a horizontal asymptote at \( y = -4 \), and passing through \( (2, 0) \). - **(b)** The zero of \( f(x) \) is at \( x = 2 \). - **(c)** \( f(x) < 0 \) for all real numbers \( x \) where \( x < 2 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To graph \( f(x)=2^{x}-4 \), you start by plotting key points. When \( x = 0 \), \( f(0) = 2^0 - 4 = -3 \). When \( x = 2 \), \( f(2) = 2^2 - 4 = 0 \), which indicates one root. The graph approaches \( y = -4 \) as \( x \to -\infty \) and rises sharply as \( x \to +\infty \). To find the zero of \( f(x) \), set \( f(x) = 0 \): \( 2^x - 4 = 0 \) implies \( 2^x = 4 \). Hence, \( x = 2 \). This is the point where the graph intersects the x-axis. For \( f(x) < 0 \), the solution lies between \( -\infty \) and the zero. The graph indicates that \( f(x) < 0 \) when \( x < 2 \). Hence, the solution is \( x < 2 \). Curious about the behavior of exponential functions? They grow rapidly, and their graphs typically exhibit a smooth curve that never touches the x-axis for negative inputs, making them unique in their consistency and reliability. If you're interested in the practical uses of exponential functions, think about how they model real-life situations like population growth, radioactive decay, or even finance through compound interest! Understanding these applications can make algebra more relatable and exciting!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad